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Abstract
Software is plagued with bugs. Some of those bugs simply cause minor annoyances,

but some others like Heartbleed or CrowdStrike are so critical that they make it to the
headlines of the newspapers. As software has become pervasive in our lives, the presence
of bugs which undermine its reliability is becoming an increasingly strong concern,
leading to the development of techniques which enable ruling out entire classes of bugs
when developing code. Among those techniques is program verification, which allows
proving mathematical properties about the behavior of a piece of software regardless
of a particular choice of inputs. While promising, program verification also tends to
be extremely labor-intensive and as such hardly scales on real-world software. In this
thesis, we thus explore the problem of developing techniques to implement verified,
realistic, performant software, which can be deployed in real-world scenarios.

We first carry out three verification use cases targeting realistic software: Noise?, a
verified compiler for the Noise family of protocols which generates performant C code
with extensive correctness and security guarantees; the Zero-Cost Functors project,
a set of language-based techniques that allow the programmer to modularly write
and verify low-level, performant code while working at a high level of abstraction,
and which allowed us to deploy verified cryptographic code in the Python standard
library; a verified implementation of parts of the Dafny compiler inside of Dafny, which
introduces techniques to stabilize SMT-based proofs. Those three use cases total
more than 60k lines of code and proofs and introduce a set of techniques which allow
program verification to scale more, while also revealing the fundamental limitations of
the toolchains they rely on.

In the second part of this thesis, building on this practical verification experience,
we introduce Aeneas, a new verification toolchain for Rust programs based on a
lightweight functional translation. We leverage Rust’s rich region-based type system to
eliminate memory reasoning for a large class of Rust programs which includes loops
and mutable borrows, by translating them to a pure lambda-calculus. Once extracted,
this pure model allows the user to reason about the original Rust program through the
theorem prover of their choice. Doing so, we relieve the proof engineer of the burden
of memory-based reasoning, allowing them to instead focus on functional properties
of their code. The translation mechanism itself relies on a symbolic execution which
provably implements a borrow-checker for Rust; as such Aeneas is the only existing
borrow-checker which comes with formal guarantees. As of today, Aeneas has backends
for F?, Coq, HOL4 and Lean, which we present and evaluate.
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Introduction
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3

In 2011, some former employees of the McAfee antivirus company decided to join
forces to found their own cybersecurity company. For many years, they carried their
business relatively unknown to the public by doing what every cybersecurity company
does, such as providing security software, warning about security vulnerabilities [1]
or investigating cyberattacks [2]. This situation dramatically changed thirteen years
later, when, in the most ironic manner, a faulty update to one of their security software
products caused a worldwide IT outage, resulting in flights and trains getting cancelled,
financial transactions being blocked, and public services such as hospitals being heavily
disrupted [3, 4]. Because of this unfortunate event, everybody now knows the name of
CrowdStrike.

Alas, this is by far not the only occurrence of a severe bug found in hardware or
software during the history of computer science. Just to name a few, a buffer overflow
in the OpenSSL implementation of the TLS protocol caused the infamous Heartbleed
security vulnerability [5]. An error in the floating point division of the Pentium processor
in 1994 caused Intel to lose hundreds of millions of dollars in a massive recall of the
faulty processors [6]. An integer overflow in the Inertial Reference System of the Ariane
5 rocket caused it to crash during its inaugural launch in 1996 [7], again causing the
loss of hundreds of millions of dollars. Some bugs even caused the loss of lives, as
experienced with the Therac 25 radiation therapy machine [8] and the TRP/2 radiation
therapy software [9], whose software defects both led to the overdose of patients, leading
to several deaths.

As software is pervasive in our lives today, controlling our cars, banking systems,
medical devices, or communications, this state of affair can only cause serious concerns.
In fact, in 1968, when computer software was still a young industry, participants to the
first NATO Software Engineering Conference were already alarmed by what came to be
known as the “software crisis” [10]:

There is a widening gap between ambitions and achievements in software
engineering. [...] Particularly alarming is the seemingly unavoidable fallibil-
ity of large software, since a malfunction in an advanced hardware-software
system can be a matter of life and death, not only for individuals, but also
for vehicles carrying hundreds of people and ultimately for nations as well.

As Dijkstra would put it later during his 1972 Turing Award lecture [11]:

The major cause of the software crisis is that the machines have become
several orders of magnitude more powerful! To put it quite bluntly: as long
as there were no machines, programming was no problem at all; when we
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had a few weak computers, programming became a mild problem, and now
we have gigantic computers, programming has become an equally gigantic
problem.

More than 50 years later, after decades of hardware innovations which closely
followed Moore’s Law [12], software has become incomparably more complex than at
the time of the software crisis, frequently reaching millions of lines of code, and even
billions in the most extreme cases [13]. As a consequence, industrial software continues
to be plagued with defects, up to the point where the average number of bugs per line
of code has become a regular measure in the software industry [14]. In this context, it
seems we are doomed to live in a world where missing error conditions cause planes to
crash [15], incorrect conversions between metric and imperial units lead to space probes
getting lost in space [16], or the risk of integer overflows forces engineers to hastily
update the counter of views on YouTube because a Korean song is, definitively and in
all respects, far too popular [17]. Or maybe not?

Back in the early days of computer science, in 1949, when computers were still
using vacuum tubes [18] and programming meant painstakingly punching holes in
tapes [19], Alan Turing himself was already thinking about the problem of ensuring
that a procedure is correct [20]. His idea was to insert assertions in the code to help
a human checker perform an external verification of its behavior. By doing so and
probably unknowingly, he had become one of the pioneers of a field which would come
to be known as formal verification.



Chapter 1

A Brief History of Formal Verification

1.1 The Early Days of Program Verification

Programmers were quick to realize that testing a program is not enough to ensure the
absence of bugs. Rather, as Dijkstra famously put it, “program testing can be a very
effective way to show the presence of bugs, but is hopelessly inadequate for showing
their absence” [11]. This realization prompted computer scientists to look for software
defects in a more systematic manner, in particular by designing methods to formally
reason about programs and their behaviors. Some preliminary work followed Turing’s
1949 paper [21–26], culminating in two seminal papers. In 1967, Floyd introduced the
notion of verification conditions, which assert a relationship between preconditions and
post-conditions [27]. Building on this work, Hoare laid out in 1969 the foundations of
modern program verification by introducing what came to be known as Hoare Logic [28].

From there, researchers extended Hoare’s work to build logics targeting programs of
increasing expressivity. Among the practical verification work performed during the
following years we can mention: the verification of a find function operating on an array
and containing a loop [29], extensions of the Hoare Logic to reason about function
calls [30] and parallel programs [31], or the proofs of correctness of a recursive quicksort
function [32] and of a table lookup which used jump instructions [33]. Among the most
influential work of that period, we can mention Dijkstra’s paper which introduced the
notion of weakest preconditions [34], and which allowed computing a logical predicate
characterizing a whole function body, thus reducing its verification to a problem of
entailment in a specific logic.

Despite the early promises of program verification and Hoare’s initial optimism,
who went as far as speculating that a proof of program correctness could be “hardly
more laborious than the traditional practice of program testing” [29], the practical

5
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results of program verification in the 1970s were extremely modest. For instance, the
verification of a (minmax) SRLMT function made of 14 machine instructions and whose
abstract definition is given by SRLMT(signal, limit) = MIN(limit, MAX(signal, −limit))
was considered state of the art in 1976 [35]. In view of such humble results, formal
verification could not but attract strong scepticism from other computer scientists. Some
of them, noting not only that the field had a hard time scaling to realistic programs, but
also that many of such real-world programs did not admit formal properties that could
be mathematically verified, advised for research on the topic to stop altogether [36]:

Even [...] C.A.R. Hoare has been quoted [...] as saying “In many applications,
algorithm plays almost no role, and certainly presents almost no problem."
(We wish we could report that he thereupon threw up his hands and
abandoned verification, but no such luck.)

At this time, the opponents of program verification were many and its proponents
only a few [37]. Yet, some pioneers had laid out the foundations which would later lead
to its first success.

1.2 The Emergence of Mechanized Reasoning

For program verification to become useful, it would need to scale. Interestingly, scalabil-
ity did not necessarily mean automation, nor even the use of mechanized techniques. A
notable example is given by Harlan D. Mills, then director of software engineering and
technology at IBM’s Federal Systems Division, who developed a methodology which
by the mid-1980s was known as the “cleanroom” [38]. The cleanroom, if not program
verification in the purest sense, consisted of taking inspiration from program verification
to make code reviews a more systematic process. As such, programmers had to “prove”
to their reviewers that their program was correct by going through it line by line and
explaining as rigorously as possible why it was the case, very much like a mathematician
detailing the proof of a theorem to some of her colleagues. This methodology led to
some success, but at a cost (1000$ per line of code in the case of the space shuttle).

However, if we put the cleanroom methodology aside, for program verification to
reach its first substantial achievements it would need to rely on mechanized proofs.
The field of mechanized reasoning, that is, the use of computers to develop and verify
mathematical proofs, emerged in the early days following two axes. First, the emergence
of automated reasoning approaches which witnessed a flurry of activity during the 50s
and 60s and, perhaps surprisingly, included almost all the earliest work on automated
reasoning [39]. Second, the development of tools to actually perform mechanized
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reasoning in a more or less interactive manner and by relying on a varying degree of
automation. The latter really started at the end of 1960s and led in particular to the
development of the first interactive theorem provers.

1.2.1 Automating Reasoning

In 1954, Martin Davis, working with the vacuum tube computer at the Institute for
Advanced Study in Princeton, wrote an implementation of the procedure Presburger
had designed to solve linear arithmetic problems. This was the first implementation
of an automated decision procedure in the history of computer science and, as Davis
himself acknowledged, there was a long road ahead [40]:

Since it is now known that Presburger’s procedure has worse than exponential
complexity, it is not surprising that this program did not perform very well.
Its great triumph was to prove that the sum of two even numbers is even.

Going beyond linear arithmetic laid the problem of reasoning about propositional
calculus, which Newell, Shaw and Simon tackled in 1956 by introducing an incomplete
procedure they called the Logic Theory Machine [41]. This procedure worked very
much in the spirit of the proofs written in Principia Mathematica [42], the massive
attempt from Whitehead and Russel to rebuild the foundations of mathematics, by
deriving proofs from axioms and elementary reasoning rules like the modus ponens.
The pen-and-paper effort of writing the three taxing volumes of the Principia had been
so intense that Russel admitted later that his “intellect [had] never quite recovered from
the strain” [43]. On their side, Newell, Shaw and Simon applied their Logic Theory
Machine to the Principia; they succeeded in automatically proving 38 theorems from
Chapter 2, to Russel’s greatest satisfaction [44]:

I am delighted to know that ‘Principia Mathematica’ can now be done by
machinery. I wish Whitehead and I had known of this possibility before we
wasted 10 years doing it by hand.

Propositional logic was of course not the end of the story: in order to write serious
properties, one also needs functions and quantifiers; that is, first-order logic.

In 1957, Abraham Robinson [45] proposed a deviation from the then ‘standard’ view
of deriving mathematical theorems from axioms and inference rules, used for instance in
the Principia Mathematica and which then seemed natural to mathematicians. Instead
of trying to replicate the process of a human being doing a proof in the style of the Logic
Theory Machine, he advocated tackling the problem of computationally demonstrating
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the unsatisfiability1 of first-order logic formulae by designing techniques more suited for
computers. He proposed the method of using Skolem functions to eliminate existential
quantifiers, before using Herbrand’s theorem, which in effect defines a procedure, on the
resulting universally quantified formula. The procedure he described would work, after
skolemization, by accumulating different instantiations of the formula until reaching a
contradiction. Robinson drew a parallel of searching for instantiations to the intellectual
process of a mathematician searching for a proof, and doing so insisted on the importance
of properly selecting those instantiations.

Robinson’s idea would prove extremely influential and was quickly put into practice,
notably by Gilmore [46], and improved. Prawitz devised a method to “select” instanti-
ations more efficiently [47]. In parallel, Martin Davis and Hilary Putnam noted that
Gilmore’s procedure was too slow at deciding whether a propositional logic formula is sat-
isfiable or not [40], a problem which later came to be known as the satisfiability problem,
or simply SAT. They proposed an improvement by introducing, first in an unpublished
report to the NSA [48], then in a paper [49], a technique which came to be known as
the Davis-Putnam procedure. This procedure was improved two years later with the
introduction of the extremely influential DPLL (Davis-Putnam-Logemann-Loveland)
algorithm [50].

More work followed to improve the performance further, in particular to efficiently
combine Prawitz’s ideas for the selection of instantiations with work on efficient SAT
solving along the lines of the Davis-Putnam procedure. This led in particular to
procedures based on unification algorithms [51–53].

A few years later, in 1965, John Alan Robinson2 revolutionized the subject [40] by
introducing a procedure based on a single rule of inference, called resolution [54], and
which would crucially rely on unification. This rule was easily performable by computer,
complete for first-order logic, and had the radical advantage, over the methods based on
the Herbrand theorem, to not require the alternation between two phases (instantiating
variables, then checking if the resulting propositional formula is unsatisfiable, then
adding a different instantiation to the first, etc.).

Unfortunately, this was still too slow and more work was needed to cut the search
space when tackling SAT problems. Early attempts included work by Robinson, Wos
and Carson [55–57]; the field would however have to wait more than three decades for
the next revolution to truly happen.

Subsequent work attempted to combine different first-order theories, eventually
1In order to prove that a mathematical formula is valid, a possibility is to show that its negation is

unsatisfiable; hence the interest in proving unsatisfiability.
2Not to be mistaken for Abraham Robinson, the one who advocated using Skolem functions and

Herbrand’s procedure and that we mentioned above.
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leading to the currently known Satisfiability Modulo Theory (SMT) solvers. Nelson
and Oppen [58] proposed a method by which procedures can communicate information
they individually derive about equalities between terms. For instance, a procedure
for linear arithmetic could deduce from i  j and j  i that i = j, from which a
procedure for the theory of arrays could deduce that get (set a i 0) j = 0, and so on,
until reaching a contradiction. The Nelson-Oppen method explained how to combine
individual procedures; subsequent work from Shostak [59] showed how to construct such
procedures by detailing a particular strategy for deciding satisfiability of quantifier-free
formulas3 in certain kinds of theories.

Several breakthroughs starting at the end of the 1990s finally initiated what is now
known as the “SAT revolution” [60, 61], which in turn allowed the “SMT revolution”.
They started in 1999 with the solver GRASP [62], which proposed a new architec-
ture called conflict-driven clause learning (CDCL). Two years later, the CDCL-solver
Chaff [63] achieved significant performance gains4 by putting a strong focus on better
implementation techniques. From then, the field of SAT solving witnessed an explosion
of improvements and industrial applications [61, 64].

The progress of SAT solving fueled the field of SMT solving, as the latter can be
seen as a combination of SAT reasoning and theory reasoning. This led in particular to
the DPLL(T) framework [65], which provides a way of integrating specialized theory
solvers within a general purposed engine based on the DPLL procedure, and is used
nowadays by several SMT solvers such as CVC4 [66] and Z3 [67]. The breakthroughs
in SMT solving during the 2000s would have a direct impact on program verification,
as we shall see later.

1.2.2 The Emergence of Interactive Tools

In parallel to efficient automated deduction procedures, computer science saw the
emergence of tools to actually perform mechanized proofs. Some of those tools were
purely dedicated to program verification. The earliest such tool was the program verifier
developed by James C. King during his PhD [68], which turned annotated programs
into verification conditions sent to an automated theorem prover (see below), and was
specialized on the verification of programs performing integer arithmetic. The most
challenging example verified by King was a program computing integer powers. King
would later continue his work on program verification to lay the foundations of symbolic
execution [69, 70]. Also worth mentioning are PL/CV [71], which allowed writing

3Where all variables are implicitly universally quantified
4Up to two orders of magnitude on difficult benchmarks, compared to other existing solvers.
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assertions in an Algol-like programming language, or the Stanford Pascal Verifier, which
operated on properly annotated Pascal programs [72]. More recently, we have seen the
emergence of verification aware programming languages such as Idris [73], Dafny [74] or
F? [75, 76].

Another big class of tools which emerged during those years were interactive theorem
provers. One of the goals of developing theorem provers was of course to assist
mathematicians in writing new proofs [77], or at least to help them filling the holes
in proof outlines such as the ones found in textbooks [78]. This line of work would
yield a flourishing research [39, 44, 79], reaching a point where there now exist libraries
which formalize substantial portions of mathematics [80, 81], and proof mechanization
sometimes catches up with the ongoing mathematical research [82–85]. However, and
perhaps surprisingly given the name, the development of theorem provers was also highly
motivated by the need for tools which could perform computer system verification, in
particular during the 1970s and the 1980s [39]. A notable target was the verification of
security properties such as isolation in the then new time-sharing operating systems [38].

At this stage, it is worth noting that the distinction between program verifiers,
which allow verifying programs, and theorem provers, which allow general mathematical
reasoning, is not always clear cut. For instance, the PL/CV program verifier that we
mentioned above, and which targeted the verification of programs written in an Algol-
like language, was directly inspired by the LCF theorem prover [86] (see below). As it
targets a language which is essentially pure, it is actually very close to a theorem prover
and as such was used to formalize a number of arithmetic facts [71]. At the opposite end,
both the ‘Pure LISP theorem prover’ [87] and ACL2 (‘Applicative Common Lisp’) [88]
can be considered as theorem provers [39], though their “logics” are (extensions of) a
pure subset of Lisp. The Coq proof assistant [89], developed after 1984, was initially
developed as a type-checker for a dependently-typed language called the Calculus of
Inductive Constructions (CIC) [90], before being extended to allow the incremental
construction of proof objects [39, 89]. More recently, Lean [91], developed after 2013
and also based on CIC, describes itself as both a programming language and a theorem
prover.

As we noted earlier, the bulk of the development on interactive theorem provers,
where interactive has to be understood in a very broad sense, started after the research
in fully automated approaches had already produced notable results. This is not
coincidental: if some theorem provers clearly benefited from the research in automated
deduction to provide a high degree of automation, their development was also a reaction
to the research in fully automated approaches [39]:
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Perhaps the most powerful driver of interactive theorem proving was not so
much technology, but simply the recognition that after a flurry of activity
in automated proving, with waves of new ideas like unification that greatly
increased their power, the capabilities of purely automated systems were
beginning to plateau.

As Robin Milner explained when asked about the development of his own prover5 [92]:

I greatly admired Robinson’s resolution principle, a wonderful breakthrough;
but in fact the amount of stuff you can prove with fully automatic theorem
proving is still very small. So I was always more interested in amplifying
human intelligence than I am in artificial intelligence. That means I began
to be interested in how one could verify programs.

The first implementation of what resembles an interactive theorem prover was
probably Paul Abrahams’ Proofchecker in 1963 [39, 93], which he used, quite expectedly,
for the verification of theorems from the Principia Mathematica. The first sustained
effort in developing theorem provers closely followed, with the SAM (Semi-Automated
Mathematics) family of provers, of which 5 different versions were developed between
1963 and 1969 [94]. From there the field witnessed an explosion of provers making
different design choices with regards to such things as: their underlying logic, the level
of automation, the proof language, etc. In 2006, Freek Wiedjik could write a survey to
compare the Pythagorea’s proof of the irrationality of

p
2 in a selection of 17 of the

then most significant theorem provers [95]. Some of the most important ideas which
underpin those provers had appeared quite early.

The idea of exploiting the Curry-Howard correspondence between propositions and
types was introduced by one of the earliest provers, Automath, developed between 1967
and 1968 [96]. The idea is that if types are interpreted as propositions, constructing
a proof simply consists in exhibiting an object of the proper type. A large family of
provers reused this idea, though in different ways [39, 97] and for different logics; among
those we can mention: ⌫PRL [98], Coq [89], Agda [99], Twelf [100], and more recently
Lean [101].

Another series of influential provers appeared in the following decade when Robin
Milner, then interested in program verification, started in 1972 to work on the LCF
provers6 [86, 103]. Those provers introduced several important ideas. First, they used
a powerful automatic simplification mechanism. Second, they introduced backward,

5The influential Edinburgh LCF, which he started in 1972
6The first one was based on Dana Scott’s Logic of Computable Functions [102], hence the name
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goal -directed proofs performed by means of tactics, where one proves theorems by
applying transformations (implemented by the tactics) to a context made of a target
proposition (the goal) and a list of assumptions. Finally, they used a clever encoding of
objects of the logic as abstract objects inside the meta-language7 of the prover. Being
abstract, objects such as theorems could only be manipulated through functions which
implemented the inference rules of the logic, ensuring that any theorem produced by
the user could be derived from the axioms and the rules of the logic. This allowed
implementing arbitrarily complex decision procedures without extending the trusted
code base [39]. Milner’s work led to the creation of the LCF family of provers, which
notably include HOL4 [107], HOL Light [108], or Isabelle/HOL [109, 110].

“LCF-style” tactics have also become a standard ways of doing proofs within inter-
active theorem provers. For instance, we already mentioned the fact that the Coq proof
assistant, which started as a type-checker for the Calculus of Inductive Constructions,
later introduced tactics [39]. In the case of provers like Coq, tactics work by generating
proof terms which are then checked by the kernel: similarly to provers of the LCF
family, this allowed implementing arbitrarily complex decision procedures without
compromising the trust in the prover.

Most of the theorem provers we mentioned above emphasized simple and secure
foundations in particular by being built upon a (relatively) small trusted kernel, from
where automation was gradually built; a consequence is that in the first years of their
existence, provers like Coq and Isabelle/HOL had rather limited automation [39]. At
the other end of the scale, other provers directly aimed for state of the art automation
with less emphasis on trust, generally for the purpose of being applied immediately to
interesting examples in program verification [39].

In 1971, Robert Boyer and J Strother Moore began working on a series of provers
which, after several iterations, led to NQTHM (‘new quantified THM’), often referred to
as the ‘Boyer-Moore theorem prover’ [39]. It introduced several techniques to automate
proofs by induction: the fact that recursive functions were defined by primitive recursions
guided the automatic application of induction principles; the prover was also able to
generalize the statements to be proved by strengthening the inductive hypotheses before
performing the induction, while also relying on a systematic use of simplification.

The user interacted with the prover by stating a sequence of theorems to prove, as
well as hints to indicate how to use the intermediate lemmas; the prover would then
proceed by automatically proving the theorems one by one in order, crucially leveraging
the intermediate lemmas provided by the user. The authors compared this approach to

7ML (‘Meta-Language‘), introduced for the special purpose of implementing Edinburgh, would
evolve to have a life of its own [104–106]
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the process of interacting with a mathematics student: “given the axioms of Peano, he
could hardly be expected to prove (much less discover) the prime factorization theorem.
However, he could cope quite well if given the axioms of Peano and a list of theorems
to prove (e.g., “prove that addition is commutative,” ... “prove that multiplication
distributes over addition,” [...])” [111]. This mostly automated way of doing proofs
would later be complemented with low-level commands which enabled a more interactive
experience [112]. The Boyer-Moore prover appeared to be quite practical and as such
was used in several interesting use cases, both in software [113, 114] and hardware [115].

Moore would later collaborate with Matt Kaufmann to build ACL2 [116], ‘A Com-
putational Logic for Applicative Common Lisp’, a successor of the Boyer-Moore prover
which still has an active community today [117]. One important innovation was to not
make any distinction between the logic and the implementation language (which are
both pure subsets of Common Lisp). This allowed for efficient execution of functions
inside the logic, and combined with the possibility of reasoning about ACL2’s logic from
within ACL2 itself allowed soundly adding custom extensions to the proof engine [118].
Due to its high-level of automation, ACL2 would find a number of applications in the
industry [119].

A different series of provers, starting with EHDM in 1983 [120] and continuing later
with PVS [121], integrated variations of Shostak’s decision procedures for equality in a
combination of theories [122], which as we have seen had laid some of the foundations
of modern SMT solving. EHDM was used mechanize the proof of a fault-tolerant
clock synchronization algorithm in 1991 [123] and initially introduced in an article by
Lamport and Melliar-Smith [124], identifying several errors while doing so.

PVS, still under development today [125], is particularly notable in that it managed
to combine both a high-level of automation and an expressive type system, contradicting
the then common belief that it was possible to have one or the other, but not both [39].
It allowed a form of dependent types, where types are parameterized by terms, by
supporting predicate subtypes (which restrict a type to a subset of this type by means
of a predicate). The drawback of this expressivity is that it made typing undecidable;
as a consequence, type-checking could require arbitrarily complex proof work from the
user. Similar design choices were made later by the F? programming language [75],
which combines an even more expressive dependent type system with the Z3 SMT
solver. Automation put aside, users of PVS could use commands to interact with
goals, in a fashion similar to tactic-based theorem provers, and could use a (restricted)
language to combine proof commands into more powerful strategies. PVS found a
number of applications, in particular in hardware [126]. More recently, F? permitted
the verification of a large collection of low-level applications, in particular related to
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cryptography [127, 128] as we shall see later.

1.3 First Applications

The progress in automated deduction and in the development of verification tools was
accompanied by a number of applications, which boomed in the 1980s and the 1990s.

The first success came from not from the world of software but from hardware
verification. A first partial success came from the SIFT project [129], an aircraft control
computer commissioned by NASA and partially verified by means of the STP (Shostak
Theorem Prover, a descendant of the the Boyer-Moore prover) and EHDM, which
however drove much controversy as the verification process led to oversimplification,
making it “unfit for purpose” [130]. Coming behind were Hunt’s verification of a
microprocessor with the Boyer-Moore prover in 1985 [115], the verification of parts
of the Viper processor [131] with HOL (a successor of LCF) [132], or the verification
by AMD of the floating-point division program of the AMD5k86 microprocessor using
ACL2 [133], and which followed the Pentium bug [6]. In parallel, some companies like
Intel validated hardware designs by resorting to model checking, a technique which
emerged during the 1980s to analyze finite state systems [134–136]; Intel however used
model checking more for debugging purposes to find design mistakes rather than as a
verification technique [38].

With regards to software, formal verification also made some successful endeavours,
for instance with the verification of a concurrent data-structure [137] and a minimalistic
kernel [114], both with the Boyer-Moore prover, or the mechanization of a fault-tolerant
synchronization algorithm with EDHM [123].

There was however still a huge gap between the ambitions of program verification
practitioners and what was achievable in practice. For instance, they quickly understood
that verifying a single program was not enough, and that in order to get the highest
level of guarantees one needs to verify a whole stack comprising: the compiler from the
source language to the assembly code, the operating system responsible for managing
the software, and the hardware underneath [38]. The verification of the CLI stack
with the Boyer-Moore prover in 1989 [113] was a first attempt in doing so, but on toy
components.

In parallel to academic endeavours, industrial practitioners desiring stronger guar-
antees for their software resorted a wide range of methods loosely related to program
verification and which can be grouped under the umbrella term of “formal methods”.
A driving force was the certification of critical-software [138–140], but sometimes, and
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quite surprisingly, the goal was also to reduce the cost and time to market.
We mentioned the use of the “cleanroom” by Harlan D. Mills at IBM during the

1980s, which was very close to program verification, though with manual methods
rather than mechanized tools. This was a rather isolated initiative, and most of the use
of formal methods at that time consisted in using formal specification languages like
Z [141], VDM [142] or B [143]. The goal of these languages was not to write proofs,
which were completely absent, but rather to clarify what the software is supposed to do
in order to catch mistakes early in the development process. The rationale was that
the later a software mistake is found the more expensive and difficult it is to fix it; by
catching mistakes early one could save time and money.

One of the most successful application of this methodology was the IBM CICS
(Customer Information Control System) [144, 145], which used the Z notation on a
system not considered as safety critical. IBM reported that using this methodology
allowed them to reduce by half the normal number of customer-reported errors, and
also reduce the total development cost of the release by 9% (which amounted to million
of dollars) [146]. This use of formal methods on a commercial software was considered a
massive success, and IBM was awarded, together with the Oxford University Computing
Laboratory, the Queen’s Award for Technological Achievement in 1992 [147]. IBM was
not an exception: several other companies reported productivity benefits from the use
of specification languages [148–151].

Interestingly, the use of a formal specification language without doing proofs was
already enough to significantly increase confidence in software. A notable example is
given by the company Praxis, a practitioner of VDM, which in the 1990s felt comfortable
enough to engage in a project for the UK National Air Traffic Services (NATS) which
exceeded the company’s annual turnover, and contract to repair at no charge any major
fault found in the following 5 years. In practice, the delivered system failed so rarely
that after a few years NATS had to retrain their personnel in how to restart it [152].

Formal methods were of course applied to critical software belonging to a wide range
of domains, and which include: nuclear plants [139, 148, 149, 153], avionics [154], or
medical devices [155]. In case of the Sizewell B reactor in particular, one core issue
was the reliability of compilers: software developers spent 18 person months proving
the equivalence between the 26k lines of code written in their sources files, and the
assembly resulting from compilation [153].

More closely related to program verification, we can mention the use of formal
methods in railway systems, for instance to specify the SACEM embedded system which
controls the speed of the trains on the RER A line in Paris in 1989 [138]. The goal
was then to validate a new system which reduced the distance between two consecutive
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trains in order to increase the traffic, while preserving the same global safety as before.
The B method was used to specify part of the SACEM code deemed safety critical:
annotations in the code were transformed into verification conditions which were proven
“by hand” [138], and the objective of an increase of 25% of the traffic was achieved. A
few years later, in 1998, the B method was used again, this time to fully verify the
code of the driverless metro line 14 in Paris, which consisted in 86k lines of Ada [156].
The tool then worked by progressively refining [157, 158] abstract specifications into
concrete code, and integrated solvers which allowed to automatically discharge 92% of
the proofs [156]. The total cost of doing the proofs was evaluated to 7 person-months;
interestingly, the confidence was such that unit tests were deemed unnecessary and
removed altogether, resulting in a save in cost [156, 159]8.

During the 1990s, the use of formal methods gained popularity in the industry while
still causing enough scepticism to push some of its proponents to publish position papers
in their favour [160, 161]. The success of formal methods like with IBM CICS were
however acknowledged, though with some reservations [162, 163]. But as we have seen
above, the use of formal methods on realistic software mostly did not involve proofs,
which then hardly scaled or only on a specific class of software, e.g., railway systems.
The situation would dramatically change in the following decade.

1.4 Breakthroughs

In parallel to the SAT and SMT revolutions, the 2000s saw the emergence of highly
automated tools which allowed analyzing programs at scale, sometimes by being fueled
by SAT and SMT, sometimes by using orthogonal techniques.

The SLAM tool used model-checking to analyze Microsoft drivers, which had been a
“major source of concern within [Microsoft] for many years” [164]. SLAM was designed
to identify all potential bugs belonging to a certain class while limiting the amount of
false positives; more recently, the Infer tool was designed to only report true positives at
the cost of missing potential bugs [165], and is being routinely used at Meta to analyze
millions of lines of code [166–168].

Some tools also relied on bounded model checking, by which a program is analyzed
up to a specific number of unrollings of loops and recursive calls, for instance to analyze
the safety of C programs [169], and by crucially relied on efficient SAT solvers [170].

Techniques based on abstract interpretation [171] allowed the fully automated
analysis of code bases of hundreds of thousands lines of code, for instance with the

8As it is hard to test components separately, rather than the system as a whole, unit tests were
expensive, and in particular more than the 7 person-months required to do the formal proofs [159].
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Astrée analyzer [172, 173], which could in 2003 check the absence of run time errors in
the 132k lines of C code of the Airbus A340 flight control software.

All the above-mentioned techniques were able to be made fully automatic by focusing
on the verification of a restricted set of properties, and in particular runtime safety.
The verification of more advanced properties such as functional correctness, by which a
program not only runs safely but also behaves according to a well-defined specification,
would know its first important success with the help of interactive theorem provers.

The first such success was given by CompCert in 2006 [174], the formally verified
implementation of a realistic optimizing compiler for C, which was developed with
the Coq proof assistant. A second success happened in 2009 with seL4, a complete,
general purpose micro-kernel verified in Isabelle/HOL [175], and which could achieve a
performance comparable to non-verified, high-performance L4 kernels. Both applications
were considered as major breakthroughs and as opening a “new age of verification” [176];
as such they were both awarded the ACM Software System Award [176]. CompCert is
now being used in avionics and in the domain of nuclear energy [177–179], while seL4
is being used in aerospace and in autonomous aviation [180].

As using interactive theorem provers could prove tedious, a new generation of
automated tools also emerged, this time leveraging the benefits of the SMT revolution.
This led for instance to Dafny [181], Chalice [182], Why3 [183], Viper [184], or F? [75].
Dafny and F? in particular were used to verify a wide range of realistic software [128, 185–
187].

As of today, program verification has been able to produce a wide range of verified
artifacts. Following CompCert and seL4, several verified compilers and micro-kernels
have emerged, with for instance the CertiKOS micro-kernel [188] (verified in Coq),
the CakeML compiler for ML [189] (verified in HOL4), and the Vélus compiler for
Lustre [190] (in Coq). But program verification is not limited to compilers and micro-
kernels: other examples include the miTLS verified implementation of TLS [191] written
in F# and verified in F7 (a predecessor of F?), the HACL? verified cryptographic
library [185] (F?), which contains more than 100k lines of verified C code and is notably
being used in the Linux kernel, in Firefox and in the Python standard library, the
Fiat-Crypto library of big numbers for cryptography, which is used by some of the
cryptographic primitives in Google Chrome [192], and verified implementations of
distributed protocols [186] and of distributed key-value stores [187]. It is worthy to note
that 30 years after the endeavour of the CLI stack [113], realistic versions of most of
the components needed for such a stack have been verified in one way or another [193].

In parallel, validation efforts evaluated the impact of program verification on software
reliability. Both detractors [36] and proponents [160, 161] of formal methods identified
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early in the history that program verification is fallible, in particular because all
verification efforts rely on some assumptions that must be true for the verification
to be valid; for instance, preconditions must be satisfied upon calling a function,
formal developments make assumptions about the hardware or some system calls, the
verification tools themselves may have bugs, etc. Several studies have showed that the
use of program verification substantially improved the reliability of software in practice,
in particular by analyzing the CompCert compiler [194] and the seL4 micro-kernel [195].
In the case of CompCert, authors of the CSmith fuzzer tested CompCert and other
industrial C compilers; they note: “The striking thing about our CompCert results is
that the middle-end bugs we found in all other compilers are absent. As of early 2011,
the under-development version of CompCert is the only compiler we have tested for
which CSmith cannot find wrong-code errors. This is not for lack of trying: we have
devoted about six CPU-years to the task.”

Following those academic success, program verification has actually evolved up to
the point where there now exist industrial verification teams, which use verification tools
such as Coq, Lean, HOL Light or Dafny on a daily basis. There are notably such teams
at Galois [196–198], Meta [199], Amazon Web Service [200, 201], or ProvenRun [202]
Yet, despite those success, the use of program verification is still a niche activity facing
many challenges that must be overcome to gain wider adoption.



Chapter 2

The Ongoing Challenges of Formal
Verification

Some early detractors of program verification prophesied that “no major programs [...]
would ever be verified by man, woman, child, beast, or machine” [37]. If the past 20
years have proven them largely wrong, the field still faces much criticism and as such is
forced to continuously justify its existence [151, 159]. Yet, some of the criticism is not
unjustified.

The main challenge of program verification today is that it is an extremely labour
intensive activity requiring a lot of expertise. We mentioned the breakthroughs that
were the CompCert compiler and the seL4 micro-kernel. Verifying both programs,
which have around 10k lines of code each, required 6 person-years to write 150k lines
of Coq proofs in the case of CompCert [179], and 22 person-years to write 200k lines
of Isabelle/HOL proofs in the case of seL4 [180]. Those two programs are however
relatively simple with regards to the current industrial standards. The 10k lines of
code of CompCert are hardly comparable to GCC’s more than 15 millions of lines of
code [203]. Verifying such an optimizing compiler was undoubtedly an impressive tour
de force, yet it required some simplifying assumptions which could in theory be used
to prove incorrect optimization passes [204]1. In the case of seL4, the micro-kernel
only runs on a single core2; its complexity can also not be compared to that of a full
operating system.

Klein et al. analyzed the cost of developing and verifying seL4 and came to the
conclusion that program verification, which allows developing software whose assurance
level is higher than Common Criteria’s EAL7 (the highest), is competitive with regards

1In particular, malloc() is assumed to always succeed and never return the null pointer; this could
be used to prove that a pass which removes defensive checks against heap overflow is correct [204].

2The verification of a multicore version which uses a global lock is on hold [205].
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to standard techniques allowing the development of software satisfying EAL63 [206]. If
this may be used as an argument to promote program verification for the certification
of critical software, we are far from being able to claim that verification can help reduce
costs by catching bugs early, the same way specification languages helped companies
like IBM and Praxis during the 1990s. As a consequence, we are today in an in-between
situation: several verification success have demonstrated the feasibility of program
verification on real-world projects, and the field has actually achieved the notable
success of making it into the industry. However, the cost of verification is such that
industrial practitioners are still few, and the size of the biggest verified software is still
tiny compared to what is regularly developed nowadays.

The main reason behind the prohibitive cost of program verification is that formal
verification requires carrying out even simple reasonings with an extremely high level of
details. This is made worse by the problem of reasoning about concrete programs and
their semantics. For instance, on a real computer, machine integers are bounded, and
proof engineers have to explicitly reason about those bounds. Worse, modeling side
effects can be hard and lead to tricky reasonings. In particular, many programs use
pointers to do in-place updates: this simple problem has been a huge pain for program
verification [168, 207], leading to a rich literature of techniques to efficiently model and
reason about memory manipulating programs, including techniques such as dynamic
frames [208], implicit dynamic frames [209], or separation logic [168, 210].

If many proof obligations are actually quite simple and easily disposed of, the
task of verifying a realistic program requires discharging a huge amount of them; for
instance, replaying the proofs of the VeriBetrKV distributed key-value store verified in
Dafny [187] requires sending 5600 queries to the Z3 SMT solver [211]. This is a point
about which both proponents and detractors of program verification readily agreed on.
As Shostak had remarked back in the 70s, the mathematics involved in verification
work is “wide” rather than conceptually “deep” [38]; he would leverage this insight to
drive the development of efficient decision procedures. De Millo, Lipton and Perlis, this
time arguing against program verification, would make the similar claim that program
verification is “long and involved but shallow” [36].

Research to address this problem has thrived since the early days of verification,
with from the beginning a tension between highly-automated decision procedures and
less automated but more flexible techniques such as interactive theorem proving.

3Klein et al. claim that that the cost of developing the kernel with (resp., without) the tools was
of $362/SLOC (Source Line of Code) (resp., $127/SLOC), to be compared with the $1 k/SLOC for
EAL6 software usually found in the industry. This estimation is to be taken with a pinch of salt, as
the salary of a PhD student is definitely lower than the salary of a software engineer, and as it doesn’t
include the cost of actually certifying the software; the order of magnitude is still informative.
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The need to discharge a lot of mundane proof obligations naturally pushes people
towards more automated techniques, and this has been a strong argument during the past
20 years for the development of verification tools based on SMT solvers [75, 181, 183],
which have become the de facto decision procedures when one thinks of automation
in program verification today. At the same time, today’s SMT solvers can be hard
to understand and control: as they are based on sensitive heuristics, small changes in
queries can have huge consequences, with proofs suddenly taking a lot more time to
complete, or breaking in unpredictable manners [196, 211–214]. This proved to be an
important issue in practice; remarkably, a whole session in the first edition of the Dafny
workshop was dedicated to this well-known problem of “proof stability” [215].

SMT solvers also have some more fundamental limitations. The fact that they
manipulate formulae in first-order logic while being used in frameworks which support
higher-order logics can lead to disconcerting failures when some properties get “lost in
translation” [216, 217]. Another issue arises from the fact that SMT solvers are domain-
specific in that they can handle a fixed number of theories (e.g., linear arithmetic,
arrays, bitvectors, etc.). When verification requires reasoning about a theory which is
not supported, or with inefficient heuristics4, automation falls short and the user has
to resort to writing tedious, manual proof scripts [214, 218, 219]. One consequence is
that users of tools based on SMT solvers can not simply use them as black-boxes: they
need to have some understanding of their inner workings to properly structure their
proofs [214, 217].

In an ironic replay of what already happened during the 1970s, this state of affair can
push people towards less automated but more interactive and flexible techniques [201].
The world is of course not rosy either when looking at those approaches. If their
proponents have come up with a set of techniques to implement efficient, custom
automation [220, 221], using interactive theorem provers still often requires writing
tediously detailed proofs. Proof scripts consisting of calls to arcane tactics doing
mysterious transformations also quickly lead to inscrutable “tactic soups” [222], as once
parodied by Conor McBride’s reference to the presumed EAR_OF_BAT_TAC tactic
in LCF [39]. A good illustration of this phenomenon is given by the fact that Lean
integrated a set of tactics specifically designed to help manipulate goals containing
coercions between different types [223].

One consequence of those problems, both for SMT-based approaches and interactive
theorem provers, is that writing and maintaining proofs at a large scale requires a lot
of expertise [196, 206, 214, 224].

4Z3’s heuristics for reasoning about non-linear arithmetic are for instance notoriously unstable and
as a consequence often deactivated [214]
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Aware of the shortcomings of those approaches, the proponents of both highly
automated and more interactive techniques have been lurking at each other’s side. Inter-
active theorem provers have been integrating support for highly automated procedures
in their workflows, for instance with the use of hammers by which one can send a proof
obligation to an automated theorem prover and in particular to SMT solvers, the most
successful one being probably Sledgehammer for Isabelle/HOL [225]. A more recent
technique has been the use of machine learning to automatically generate proof scripts,
but this has mostly been confined to the use of theorem provers for mathematics, and
not yet for program verification [226–228]. The Lean interactive theorem prover was also
initially designed with the explicit goal of bridging the gap between interactive use and
automation, in particular by means of a powerful meta-programming framework [229].
The other way around, highly automated tools have been adopting techniques coming
from the world of interactive theorem proving. Why3 has integrated “tactics” to help
better interact with the proof obligations, for instance by splitting goals [230], while
adding support for what is known as reflection, to enable the implementation of custom
procedures to complement SMT automation [219]. The F? verification oriented language
has also integrated meta-programming facilities to implement custom automation in
order to complement Z3 [218].

At the same time, the interactive features integrated in automated tools provide
a very distinct experience from the one provided by interactive provers, the reverse
being also true. For instance, the “tactics” provided by Why3 are rather simple and
don’t allow doing operations much more complex than splitting goals before querying
SMT solvers; as such they hardly compare with the degree of interaction provided by
even the first LCF provers. Similarly, if Meta-F? [218] introduced tactics inside the
F? programming language, as of today those hardly provide an experience which can
be considered as interactive; F? indeed doesn’t allow iteratively stepping through the
proofs, rather, the complete proof of a function body is processed in one go, and all the
proof states displayed simultaneously in the editor. Looking at the opposite direction,
if hammers have been a welcome addition to interactive provers, they use SMT solvers
in a way which is quite different from tools built with SMT solvers at their core. In
particular, a core component of Sledgehammer is the fact selector which attempts to
discover which lemmas might be useful in the proof, and give all such lemmas to the
SMT solver [231]. Dafny on its side doesn’t attempt to automatically apply lemmas,
which have to be manually instantiated by the user when writing proof scripts: the
SMT solver is used mostly to bridge the holes in the proof laid out by the user. The
F? programming language does allow the automatic instantiation of lemmas, but by
using SMT patterns (a lemma is automatically instantiated if some term matching a
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given pattern, which is stored in an E-graph, is found in the context), which operate in
a manner radically different from the selection operated by Sledgehammer. It is also
worth noting that the presence of baked-in SMT automation provides a quite different
experience when using dependent types in Dafny or F? than when using a prover like
Coq. For instance, the fact that F? uses an extensional type system allows smoothly
using refinement types without thinking about the proofs of refinement when the solver
automatically discharges them. At the opposite, in Coq, independently from the level
of automation, refinements require explicit proof terms, making the use of dependent
types a bit heavier in practice.

When looking back, the field of verification has made dramatic progress since Alan
Turing’s work on checking a large routine, and pioneers such as Floyd and Hoare laid
out the foundations of modern program verification. There now exist working tools
which have been applied to a wide range of realistic programs and are being routinely
used in the industry. However, the field still faces many challenges as tools are hard to
scale and require a huge amount of expertise; we have yet to create a new generation of
tools that will push the boundaries of program verification.





Chapter 3

Thesis Overview and Contributions

The work we present here explores the problem of scaling program verification to a larger
class of programs. In this thesis, we argue that the use of techniques to simplify the
modelling of program semantics, combined with reasoning frameworks based
on custom, extensible automation, is a promising way of scaling verification
to a large class of realistic programs.

3.1 Moving Up the Stack of Verified Software with
SMT-based Automation

Recent research aimed at verifying cryptographic implementations has revealed a sweet
spot for program verification. Cryptographic primitives implement tricky mathematical
specifications while at the same time aiming for extremely high performance; as such
they are extremely low-level and error-prone, resulting in a high number of CVEs in
common cryptographic libraries over the years. As cryptographic providers must also
both be agile, by providing multiple implementations (e.g., Blake2b and SHA-256) for
the same functionality (e.g., hashing), and multiplexed, by being able to choose between
multiple (optimized) implementations of the same algorithm, developers of such libraries
must implement and maintain a high number of implementations, increasing the risk of
mistakes. Higher up the stack, protocols such as TLS can be extremely complex, with
in particular non trivial state machines which are easy to get wrong [232]. Worse, any
CVE found in such implementations leads to serious security vulnerabilities; case in
point, the infamous Heartbleed vulnerability in the OpenSSL implementation of TLS
has at its root a simple buffer overflow [5].

At the same time, reasoning about cryptographic primitive implementations is
manageable with the existing verification tools. Indeed, verifying functional correctness
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is often enough in giving a very high level of confidence in those implementations;
other applications would require more: for instance, a verified distributed database
would also require a property of eventual consistency to be meaningful. If cryptographic
specifications can be subtle, they also fit well within the logic of proof assistants. Finally,
cryptographic primitives have a limited use of effectful features: they are sequential, do
not have a complex state, and do not manipulate complex data structures but rather
only a few buffers.

This state of affair has made cryptographic implementations a prime target for
program verification, starting with cryptographic primitives, but also somewhat extend-
ing to protocols. Work like FiatCrypto [192] has led to the verification of big-number
libraries for cryptography, which are being used by several cryptographic primitives
in Google Chrome. Broader in scope, Project Everest has led to the development
of the HACL? cryptographic library [127, 233], which contains a large collection of
cryptographic primitives currently used by Firefox, Linux, WireGuard, or more recently
the Python library, as well as verified protocol implementations like miTLS [191, 234].

If past work tackling the verification of cryptographic implementations can be con-
sidered an important success, many challenges remain to be addressed, in particular
when moving up the software stack by going beyond primitives. For instance, if the
miTLS [191] tour de force demonstrated that it is possible to verify protocol implemen-
tations, this verification was, in contrast to the numerous primitives implemented in
HACL?, one-shot; as such it is unclear how to apply similar techniques to a larger class
of programs. The verification effort of miTLS also suffered from several limitations. For
instance, if miTLS came with computational security proofs, those did not go beyond
the record layer. The Low? verification framework, used to implement the HACL? library,
has also mostly been been used to verify functions which consume buffers: the problem
of verifying complex data-structures and high-level APIs had not been tackled; miTLS,
on its side, relied on the combination of several frameworks (F? and Frama-C).

In view of those observations, we decided to tackle the problem of pushing the limits
of what has been enabled by projects like HACL?, by moving up the software stack to
extend program verification to a larger class of realistic programs. We do so through a
series of verification projects.

Noise
?. We note above that the verification of protocol implementations is still limited.

As a consequence, for our first project, we decided to explore the problem of implementing
secure high-level protocol implementations with the Noise? project, which consists of
a verified compiler targeting the Noise protocol framework. Noise defines a succinct
notation and execution framework for a large class of secure channel protocols, some
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of which are used in popular applications such as WhatsApp and WireGuard. This
family of protocols currently defines 59 protocols, but could be extended in the future
to support protocols with signatures and key encapsulation mechanisms. The Noise?

compiler takes any Noise protocol, and produces an optimized C implementation with
extensive correctness and security guarantees. To this end, we formalize the complete
Noise stack in F?, from the low-level cryptographic library to a high-level API. We
write our compiler also in F?, prove that it meets our formal specification once and for
all, and then specialize it on-demand for any given Noise protocol, relying on a novel
technique called hybrid embedding. We thus establish functional correctness, memory
safety and a form of side-channel resistance for the generated C code for each Noise
protocol. We propagate these guarantees to the high-level API, using defensive dynamic
checks to prevent incorrect uses of the protocol. Finally, we formally state and prove the
security of our Noise code, by building on a symbolic model of cryptography in F?, and
formally link high-level API security goals stated in terms of security levels to low-level
cryptographic guarantees. This implementation is the first comprehensive verification
result for a protocol compiler that targets C code, while providing a secure high-level
API handling state machine transitions, peer and session management, state serialization
and deserialization. It also represents a substantial amount of verification effort: Noise?

consists of more than 45k lines of F? code and proofs, and every instantiation generates
between 4k and 6k lines of low-level, specialized C code.

Zero-Cost Functors for Program Verification. When moving up to higher-level
software quickly comes the problem of implementing generic code. Even more challenging
in our case is the fact that we need this code to be low-level, efficient, and verified.

In this second project, we present the design, implementation and evaluation of a
set of language-based techniques that allow the programmer to modularly write and
verify code at a high level of abstraction, while retaining control over the compilation
process and producing high-quality, zero-overhead, low-level code suitable for integration
into mainstream software. We again implement those techniques within the F? proof
assistant, and specifically its shallowly-embedded Low? toolchain that compiles to C.
Through our evaluation, we establish that those techniques were critical in scaling the
popular HACL? library past 100,000 lines of verified source code, and brought about
significant gains in proof engineer productivity. The exposition of this methodology
converges on one final, novel case study: the streaming API, a finicky API that has
historically caused many bugs in high-profile software. Using this approach, we manage
to capture the streaming semantics in a generic way, and apply it “for free” to over a
dozen use-cases. Six of those have made it into the reference implementation of the
Python programming language, replacing the previous CVE-ridden code.
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Stabilizing Proofs with Dafny-in-Dafny. The above-mentioned projects, by being
implemented in F?, crucially rely on SMT automation. If this class of automation
proved powerful to handle many reasonings and in particular arithmetic reasonings,
it also suffers from several issues such as proof instabilities. The ability to use SMT
solvers for different classes of programs, like compilers, is also unclear. In this third
project, we tackle the problem of verifying parts of the Dafny compiler inside of Dafny
itself, and design novel techniques to improve the proof stability by relying on Dafny’s
modules to implement induction principles.

3.2 Towards Better Scalability with the Verification
of Rust Programs

The projects we presented in the previous section allowed us to push frameworks like
Low? to their extreme limits; scaling program verification further would require a new
generation of tools. We already discussed the limitations of program verification today:
let us now focus on the most important points that were revealed through the Noise?,
zero-cost functors, and Dafny-in-Dafny projects, and which led to the design choices at
the root of the toolchain we introduce in the second part of this thesis, the Aeneas
framework.

One of the most critical issues we encountered is that reasoning about memory
leads to a lot of tedious proof obligations. In the case of Low? in particular, the
use of dynamic frames [208] makes the state of Z3 grow extremely quicky, leading
to slow, unstable proofs. A potential solution is to use separation logic [168, 210],
and the Steel framework [235, 236] recently attempted to do so for F?, with some
success [237]. But if the use of separation logic can make memory reasoning simpler,
it doesn’t remove that reasoning altogether. At the same time, one might notice
that there are many situations where we shouldn’t have to reason about memory at
all, as aliasing is for instance non-existent or at least extremely limited; this is in
particular the case in most of the code generated by the Noise? compiler. Several lines of
work have attempted to verify code which manipulates pointers and performs in-place
updates while abstracting away reasoning about memory [238–241]. More recently,
the emergence of the Rust programming language has opened new avenues for this
research, as Rust is an expressive low-level programming language which allows precise
memory manipulations, while enforcing a strict aliasing discipline through its linear type
system and its mechanism of borrows. In particular, Electrolysis [242], later followed by
RustHorn [243] and Creusot [244], made promising attempts at designing mechanisms
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to capture the semantics of safe Rust code with pure models. This means that even
though the verified code uses effectful features such as pointers and in-place updates,
the verification itself can be performed on a model which, by the virtue of being pure,
abstracts away boring, low-level memory details, allowing the proof engineer to focus
instead on the functional behavior of the program.

We decided to follow this approach of generating pure models of safe Rust code, so
as to simplify memory reasoning for a large class of programs. Memory is however not
the only issue we encountered, as we also suffered from shortcomings stemming from the
use of SMT-based automation. The sometimes extremely fast growth of SMT states,
leading to unstable or long proofs, can be hard to cope with in practice. The recurrent
need to discharge proof obligations which do not fit well within the theories natively
supported by SMT solvers (e.g., non-linear arithmetic) also requires regularly writing
detailed proof scripts. This combination of unstable proofs and manual reasonings
is made worse by the lack of interactivity of SMT-based approaches, which leads to
painful debugging sessions in the presence of failing or unstable proof obligations.

We remark that SMT solvers can be extremely good at automating a large class of
proof obligations, which is crucial to enabling a smooth proof experience. For instance,
we observe that arithmetic proof obligations are pervasive in HACL?, as, e.g., every
array access requires a bounds check, while every addition requires an overflow check.
In the general case, such reasoning can be highly non-trivial and require several steps
to, for instance, unfold an invariant, derive crucial facts from several theories, combine
them together and finally finish the proof with an arithmetic solver. As SMT solvers
like Z3 can be excellent at automating proofs about linear arithmetic, their use can
drastically ease the verification experience in those cases.

At the opposite, some other classes of problems are less well-handled by SMT
solvers. For instance, in the case of F?, reasoning about equalities between sequences
is performed by proving extensional equality (i.e., for every index, the cells are equal)
and by leveraging SMT patterns; this unfortunately tends to make Z3’s context grow
extremely quickly. As a consequence, automation regularly falls short, forcing the user
to resort to detailed proof scripts with, for instance, the use of the calc constructs which
provides a convenient, through pedestrian, way of writing sequences of (in-)equalities.
Similarly, reasonings about non-linear arithmetic is one of the motivations behind F?’s
support for meta-programming [218].

At the same time we remark that when applying good proof engineering practice
to make their development scale, proof engineers tend to only leverage a fraction of
the power of SMT solvers. Because of the need to tightly control the SMT context
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so that the proof time remains low and stable, a common good practice consists in
restraining them by, for instance: deactivating unstable heuristics [214], and precisely
controlling which facts are available to the solver at a given time (through the use of
interfaces in F?, or with finer-grained opaque and reveal instructions in F? and Dafny).
As a consequence, the class of problems automated by the use by SMT solvers is in
practice not as large as it might seem; for instance, in the case of HACL?, we observe
that aside from memory reasoning, SMT automation mostly helps with a class of linear
arithmetic proof obligations which don’t require the combination of many theories.
Moreover, in this context, proof developments leveraging highly automated frameworks
are actually not so far from developments leveraging less powerful automation; for
instance, revealing the content of an invariant by means of the reveal command in Dafny
is not that different from unfolding a definition in an interactive theorem prover. As
such and in a way which is reminiscent of the work on the first program verifiers, today’s
use of automation seems closer to a way of helping skip over mundane proof steps
(rewritings, substitutions, propositional reasoning, etc.) while still requiring manual
proof scripts for any important reasoning step.

As a consequence, we ask: in the context of a strict development discipline in
which proofs are highly structured, would it be possible to enable a proof experience
which resembles the one permitted by SMT-based tools, but by using simpler, more
controllable and interactive automation? And could we do so by using a framework
which makes extensibility one of its key features, so as to allow extending the verifier
with custom automation in order to tackle those theories that are not well-handled
natively by more general solvers?

Following those observations, we decided to implement a new verification toolchain
for Rust programs based on a lightweight functional translation and targeting various
theorem provers. We dub this toolchain Aeneas.

The first contribution of Aeneas is a new approach to borrows and controlled
aliasing. We propose the Low-Level Borrow Calculus (LLBC), an operational semantics
that captures a large subset of Rust programs, and which naturally supports delicate
patterns such as two-phase borrows and reborrows. Our semantics is value-based,
meaning there is no notion of memory, addresses or pointer arithmetic. Our semantics
is also ownership-centric, meaning that we enforce the soundness of borrows via a
semantic criterion based on loans rather than through a syntactic type-based lifetime
discipline. We claim that our semantics captures the essence of the borrow mechanism
rather than its current implementation in the Rust compiler.

We then tweak LLBC to introduce LLBC#, a symbolic semantics for LLBC which
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uses function signatures as summaries to approximate the borrow graph in the presence
of function calls. This symbolic execution supports a join operation, which prevents
an explosion in the number of states when handling disjunctions in the control-flow,
and more importantly allows symbolically executing loops by means of fixed-point
computations. We note that in effect, an interpreter for LLBC# implements a borrow-
checker for LLBC: if one symbolically executes all the functions in a program without
the execution getting stuck, then the program is borrow-checked. We formalize this
claim by proving that a borrow-checker based on our symbolic execution guarantees
memory safety.

The last contribution of Aeneas is a translation from LLBC to a pure lambda-
calculus, which crucially relies on a symbolic execution according to the semantics of
LLBC#. This translation allows the user to reason about the original Rust program
through the theorem prover of their choice, and fulfills our promise of enabling lightweight
verification of a large class of Rust programs which can contain shared and mutable
borrows, functions returning borrows, traits and loops. To deal with the well-known
technical difficulty of handling functions which return mutable borrows, we rely on
a new novel technical device called backward functions. As of today, Aeneas has
backends for F?, Coq, HOL4 and Lean, that we present and evaluate.
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Chapter 4

Noise?: Verified High-Performance
Secure Protocol Implementations

We noted that the verification of cryptographic primitives has led to notable success,
while the verification of higher-level protocol implementations is still limited. In
this chapter, we thus study the problem of implementing secure high-level protocol
implementations with the Noise? project, which consists in a verified compiler targeting
the Noise protocol framework.

4.1 Introduction

Modern distributed applications rely on a variety of secure channel protocols, including
TLS, QUIC, Signal, IPsec, SSH, WireGuard, OpenVPN, and EDHOC. Despite the
similarity in their high-level goals, each of these protocols makes significantly different
design choices based on the target network architecture, authentication infrastructure,
and desired security goals. For example, the Transport Layer Security (TLS) protocol
is used to secure live TCP connections between clients and servers using the X.509
public key infrastructure. In contrast, the Signal messaging protocol aims to provide
strong confidentiality guarantees like post-compromise security [245] for long-running
asynchronous messaging conversations between smartphones. All these protocols form
a cornerstone of Internet security, so the correctness and security of their varied designs
and diverse implementations is a tangible concern.

Security Analyses of Secure Channels. Several prior works establish security
theorems for well-known secure channel protocols. However, as protocols get more
complex, building and checking pen-and-paper proofs for complete protocols becomes
infeasible. To address this, formal verification tools are now routinely applied to
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obtain mechanized security proofs for cryptographic protocols. For example, tools
like ProVerif [246] and Tamarin [247] have been used to automatically analyze pro-
tocols like TLS and Signal [248–250], by relying on abstract symbolic assumptions
on the underlying cryptography. Computational provers like CryptoVerif [251] and
Computational RCF [252] have also been used to verify some of these protocols, provid-
ing more precise security guarantees than symbolic tools, but requiring more human
intervention [249, 250, 253, 254].

We refer the reader to [255] for a full survey of computer-aided cryptographic proofs.
On the whole, verification tools have now reached a level of maturity that they can
analyze the high-level design of most modern cryptographic protocols.

Verified Protocol Implementations. Even if the design of a protocol has been
verified, writing a secure implementation remains a challenge. Protocol implementations
have to account for many details that are left out of high-level security proofs, such
as the crypto library, message formats, state machines, key storage and management,
multiple concurrent sessions, and a high-level user-facing API that is easy for non-
cryptographers to use. Each of these components has been subject to notable bugs
resulting in embarrassing vulnerabilities like Heartbleed [5] and SMACK-TLS [232].
Many of these flaws were not found even through extensive testing.

In response, several works have sought to build high-assurance protocol implementa-
tions using formal verification tools. The most notable of these is miTLS [254], a verified
reference implementation of the TLS 1.2 protocol in F#, built hand-in-hand with mod-
ular proofs of computational security at the code-level. Follow-up works verify efficient
C implementations of various components of TLS 1.3, including the TLS packet for-
mats [256], the cryptographic library [128], and the record layer [234]. Other works have
built high-assurance protocol implementations in OCaml [257], JavaScript [249, 250],
WebAssembly [258], and Java [259].

Despite these advances, verifying a full cryptographic protocol implementation
written in a performance-oriented language like C is highly resource-intensive and can
take years of work. Consequently such projects have only been attempted for important
protocols like TLS. In this chapter, we tackle the problem of generalizing and scaling
up the security analysis of protocol implementations in such a way that they can be
applied to entire families of cryptographic protocols. Hence, we lower the human effort
involved to build verified protocol libraries.

The Noise Protocol Framework. We target verified implementations of the Noise
Protocol framework, which provides a general notation and execution rules for a large
class of secure channel protocols. The Noise specification [260] currently describes 59
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protocols, specifies message-level security properties for each of these protocols, and
precisely defines all the cryptographic steps needed to send and receive protocol messages.
Although these 59 protocols are centered around Diffie-Hellman and pre-shared keys, the
specification language is itself extensible and can easily handle protocols with signatures
and key encapsulation mechanisms in the future.

Noise is an ideal target for formal verification in that it covers a large class of similar
protocols. For the same reason, it is a challenging target, since we would like to develop
generic proofs that apply to all 59 Noise protocols and their implementations, rather
than verify each protocol individually.

Several prior works present formal analyses for various Noise protocols [253, 261–263]
and multiple open source libraries implement various subsets of Noise. However, until
this work, there has been no verified implementation of Noise. Consequently, many
security-critical protocol elements, including key management and state machines remain
unstudied. Our goal is to develop a library of verified high-performance implementations
of Noise protocols in C, with formal proofs of correctness and security that cover all
these low-level details.

Our Approach. We build a verified implementation of Noise, following the methodology
depicted in Figure 4.1. All our code is written and verified using the F? programming
language [75].

We first write a formal specification of Noise in F? (middle column) by carefully
encoding the message-level functions described in the Noise specification document [260]
and linking them to F? specifications of crypto algorithms. Our specification can be
read as an interpreter for the Noise protocol notation, and we can use it to execute any
Noise protocol. We extend this interpreter with F? specifications of key validation and
management and a high-level session API, both which are left unspecified in the Noise
document. Hence, we obtain a full specification for the Noise protocol stack, starting
from the crypto layer to the user-facing API (see Section 4.2).

Next, we write a low-level implementation of Noise (left column) using Low? [264],
a subset of F?, and prove that it matches the formal specification. We use the HACL?

verified cryptographic library to instantiate the cryptographic layer [127]. We develop a
protocol compiler using a novel technique called hybrid embedding that allows us to
write and verify generic code for all Noise patterns, prove them correct against the
interpreter spec once and for all, and then specialize and compile the verified code into
standalone C implementations for each Noise protocol (See Section 4.3).

On top of our protocol compiler, we design and build a session management layer
that handles multiple sessions in parallel and handles error conditions. We write a
verified key storage module that securely stores long-term keys both in-memory and
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Figure 4.1: Noise
? Architecture. Left: Noise protocol stack implemented in Low?;

Middle: generic formal specification of Noise in F?; Right: security specifications for
each layer using the DY? framework. After verification, the Low? code is specialized
and compiled to obtain C code for each protocol.
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on-disk. Finally, we build a verified high-level user-facing API that provides a simple,
secure, misuse-resistant interface for applications (See Section 4.4).

Our Low? code is verified with respect to our formal specification of Noise, but this
does not mean that it is secure. For example, our protocol API may accidentally expose
long-term keys to the adversary, or it may allow data from two sessions to be mixed up,
which may not violate the Noise spec but would result in serious security vulnerabilities.
To fill this gap, we extend our verification with a symbolic security analysis of the full
protocol specification using a recent framework called DY? [265]. We set and prove
security goals for each layer in our implementation (right column), linking a symbolic
model of cryptography all the way to verified high-level API security goals. Notably,
our analysis is generic and verifies all Noise protocols in a single proof, unlike prior work
which needed to run verification tools on each individual protocol. (See Section 4.5).

Finally, we demonstrate our framework by compiling verified implementations for
all 59 Noise patterns and compare the results with prior work (See Section 4.6).

Contributions. The work in this chapter is adapted from a paper published at Security
& Privacy in 2022 [266]. I personally came up with the idea of using hybrid embeddings,
which are in effect an adaptation of Futamura’s projection, formalized the specification
of the Noise protocol in F?, and implemented and verified the protocol compiler written
in Low?. Abhishek Bichhawat wrote the security proofs of the protocol functions, while
I wrote the security proofs for the high-level API, which consist of: the state machines,
the session management layer and the key-storage module.

4.2 A Formal Functional Specification of Noise

The Noise Protocol Specification [260] defines a succinct notation and precise execution
rules for a family of secure channel protocols that primarily use Diffie-Hellman and
pre-shared keys for confidentiality and authentication, yielding a total of 59 protocols
with varying authentication and secrecy properties. We begin by an informal overview
of the syntax and semantics of Noise protocols, before describing our formal specification
of Noise in the F? programming language [75].

4.2.1 Noise Protocol Notation

Three example Noise protocols are shown in Figure 4.2. The message sequence for each
protocol is divided into three phases. The first phase (before the dotted line) consists
of pre-messages exchanged by the two parties out-of-band before the protocol begins.
The second phase is the main handshake where the two parties exchange fresh key
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Protocol Message Sequence Payload Security Properties
Name  !

Auth Conf Auth Conf

X

 s

...
! e, es, s, ss [d0] - - A1 C2

! [d1, d2, ...] - - A1 C2

NX

! e A0 C0 A0 C0

 e, ee, s, es [d0] A2 C1 A0 C0

$ [d1, d2, ...] A2 C1 A0 C5

IKpsk2

 s

...
! e, es, s, ss [d0] A0 C0 A1 C2

 e, ee, se, psk [d1] A2 C4 A1 C2

! [d2] A2 C4 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

Figure 4.2: Example Noise Protocols and Security Guarantees. X: a one-way
authenticated encryption protocol; NX: an interactive Diffie-Hellman key exchange
with an unauthenticated initiator; IKpsk2: an interactive mutually-authenticated key
exchange using Diffie-Hellman and a pre-shared key. At each stage of a protocol, we
note the expected authentication level (A0-A2) and confidentiality level (C0-C5) for
messages in each direction ( /!).

material to establish a series of payload encryption keys with gradually stronger security
guarantees. Once the handshake is complete, the protocol enters the third transport
phase where both parties can freely exchange encrypted application messages in both
directions.

The handshake is described as a sequence of messages between an initiator (I)
and a responder (R), where each message is as a sequence of tokens. Each part Each
participant maintains a chaining key ki that it uses to derive the payload encryption
key at each step; both of which are initially set to public constants derived from the
protocol name. The chaining key evolves as each handshake token is processed.

Consider a handshake between I and R, where I has a static Diffie-Hellman key-pair
(i, gi) and generates an ephemeral key-pair (x, gx); R has a static key-pair (r, gr) and
ephemeral key-pair (y, gy); and the two may share a pre-shared key psk . Then the
semantics of each token sent from I to R is as follows (tokens in the reverse direction
are handled similarly):

• e: means that I includes gx in the message;

• s: I includes its static public key (gi) in the message, encrypted under the current
payload encryption key;

• es: I computes the ephemeral-static Diffie-Hellman shared secret gxr and mixes it
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into the chaining key ci, obtaining a new chaining key ci+1 and payload encryption
key ki+1;

• se: I mixes the static-ephemeral shared secret giy into ci;

• ee: I mixes the ephemeral-ephemeral secret gxy into ci;

• ss: I mixes the static-static shared secret gir into ci;

• psk: I mixes the pre-shared key psk into ci.

After processing each sequence of tokens according to the above rules, at the end of
each message, the sender (I) also includes a (possibly empty) payload encrypted under
the current payload encryption key. These payloads are implicit in Noise notation, but
we note them explicitly (d0, d1, ...) in Figure 4.2.

On receiving a message constructed using the above rules, the responder R performs
the dual operations to parse the remote ephemeral key (e), decrypt the remote static
key (s), and computes the same sequence of chaining and payload encryption keys to
decrypt the payload. In addition to the keys, each participant also maintains a hash of
the protocol transcript, which is added as associated data to each encrypted handshake
payload (to prevent handshake message tampering.)

Example X: One-Way Encryption. The protocol X is a one-way protocol that
encrypts data in a single direction, from an initiator I to a responder R. As such,
this protocol can be considered a replacement for constructions like NaCl Box [267] or
HPKE [268] for encrypting files or one-way messages.

We now break down the notation for this protocol, which appears in Figure 4.2
under “message sequence”. The pre-message token s, assumes that I has received R’s
static public key gr before the handshake. The handshake itself consists of a single
message (from I to S) with four tokens (e, es, s, ss) followed by an encrypted payload
(d0). Here, ephemeral-static Diffie-Hellman (es) serves to provide confidentiality for k1

(even if I’s static key were compromised), whereas static-static Diffie-Hellman (ss) is
used to authenticate I. After the handshake, I can send any number data messages
(d1, d2...) to R, using the final payload encryption key.

Example NX: Server-Authenticated Key Exchange. The protocol NX is a
unilaterally authenticated key exchange protocol, where R is authenticated but I is not.
Hence, this protocol can be seen as a replacement for TLS as it is used on the Web.
The main difference from X is that it has no pre-messages, and has a second message
that uses ephemeral-ephemeral Diffie-Hellman (ee) to provide forward secrecy.
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We can extend NX to a mutually-authenticated protocol by adding a third handshake
message that uses I’s static key (se). This yields a different Noise protocol called XX,
which is one of the protocols used in WhatsApp. Both NX and XX are single round-trip
(1-RTT) protocols since the initiator has to wait for the response before it can send its
first encrypted message. However, in scenarios where I already knows R’s static public
key (gr) via a pre-message, it can use this prior knowledge to start sending data with
the first message (0-RTT), but with different secrecy and confidentiality guarantees.

IKpsk2: Mutual-Authentication and 0-RTT. The IKpsk2 protocol, which is used
by the WireGuard VPN, supports mutual authentication and 0-RTT by relying on both
Diffie-Hellman and pre-shared keys, and hence provides some of the strongest security
properties among all Noise protocols.

The protocol starts like X but includes authenticated messages in both directions; it
uses four Diffie-Hellman operations and also a pre-shared key in the second message for
additional protection against compromised static keys (and future quantum adversaries).
Removing the psk token yields a protocol called IK, which is also used in WhatsApp.

4.2.2 Formalizing Noise in F?

We define a series of F? types that encode the syntax of Noise protocols. We define
algebraic datatypes (enumerations) for pre-message and message tokens. We then
define a handshake pattern as a record type containing a protocol name, a pre-message
from I to R (premessage_ir), a pre-message from R to I (premessage_ri), and a list of
handshake messages in alternating directions (first I to R, then R to I, and so on):

type premessage_token = | PS | PE
type message_token = | S | E | SS | EE | SE | ES | PSK

type handshake_pattern = {
name : string;
premessage_ir : option (list premessage_token);
premessage_ri : option (list premessage_token);
messages : list (list message_token);

}

We also define some convenient notations in F? to construct a handshake_pattern. For
example, IKpsk2 is written as:

let pattern_IKpsk2 =
hs "IKpsk2" [

~<<~ [PS];
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~>~ [E; ES; S; SS];
~<~ [E; EE; SE; PSK]

]

The Noise specification defines a set of syntactic validity rules to ensure that the
resulting protocols are implementable and secure. An example functional constraint is
that a protocol should not use the token ee before e has been sent in both directions. A
security constraint is that a session key based on a psk token should not be used for
encryption unless an e has also been sent (otherwise there could be encryption nonce
reuse.) We encode these rules as a boolean function over handshake patterns, and check
that it holds for all 59 patterns.

val well_formed: handshake_pattern -> bool

Types for the Handshake State. To formalize the execution rules, we closely follow
the Noise specification by defining the handshake state and functions over this state.
Each type and function in our specification is parameterized by a config type specifying
three cryptographic algorithms: a Diffie-Hellman group, an AEAD encryption scheme,
and a hash algorithm:

type config = dh_alg * aead_alg * hash_alg

The cipher_state type consists of an AEAD key and a counter; it can be used for AEAD
encryption and decryption:

type cipher_state = {
k : option aead_key;
n : nat;

}

The symmetric_state type represents the cryptographic state of a Noise handshake. It
contains a hash of the protocol transcript (essentially all the message tokens processed
so far), the current session key, called chaining_key in Noise, and a cipher_state (derived
from the chaining_key) which is used for encrypting static keys and payloads during
the handshake:

type symmetric_state (cfg : config) = {
h : hash cfg;
ck : chaining_key cfg;
c_state : cipher_state;

}
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The main handshake_state type contains the full state of a Noise handshake for a given
participant; it includes the current symmetric_state and all the private, public, and
shared keys currently known to the participant:

type handshake_state (cfg : config) = {
sym_state : symmetric_state cfg;
static : option (keypair cfg);
ephemeral : option (keypair cfg);
remote_static : option (public_key cfg);
remote_ephemeral : option (public_key cfg);
preshared : option preshared_key;

}

Message Processing Functions. The Noise specification document describes a
series of functions over the three state objects, which we faithfully encode in F?. The
highest-level operations defined by the document are functions for sending or receiving
one handshake or data message. We describe the F? code for the handshake sending
functions below.

First, we define a function that implements the sending operation for a single token
as a case analysis over the 7 possible tokens (we show two cases below):

let send_message_token
(cfg : config) (initiator is_psk : bool)
(tk : token) (st:handshake_state cfg) :
result (bytes * handshake_state cfg) =
match tk with
| S ->

begin match st.static with
| None -> Fail No_key
| Some k ->

begin match encrypt_and_hash cfg k.pub st.sym_state with
| Fail x -> Fail x
| Res (cipher, sym_st') ->

Res (cipher, { st with sym_state = sym_st'; }) end
end

| EE -> dh_update cfg lbytes_empty st.ephemeral st.remote_ephemeral st
| ...
end

The function send_message_token takes as arguments: a config, a boolean flag
indicating whether the sender is the initiator, a boolean flag indicating whether the
current protocol uses psk, a token tk and a handshake state st. If the token is an S, the
code finds the sender’s static key (st.static), encrypts it and adds to the transcript hash
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(encrypt_and_hash), returning the ciphertext (cipher) and the updated handshake state.
If the token is an EE, the sender reads its ephemeral private key (st.ephemeral), the
peer’s ephemeral public key (st.remote_ephemeral) and calls the dh_update function
that computes the Diffie-Hellman shared secret, mixes it into the current chaining_key,
and returns an empty bytestring and the updated handshake state. The other cases are
similar.

Building on this token-level function, we then write a function send_message_tokens
that recursively calls send_message_token to process an arbitrary list of tokens, and use
it to define a high-level function send_messagei for sending the i-th handshake message
in a handshake_pattern.

A similar sequence of functions builds up to the top-level handshake receive function
recv_messagei. Using these and other message-level functions in our specification, we
can construct or process any pre-message, handshake message, or application data
message in a Noise protocol.

Comparison with Prior Noise Models. Three features of our specification are
notable. First, our F? code is executable and precisely matches the Noise specification at
the byte level. Indeed, by linking our specification code with the HACL? cryptographic
library, we are able to extensively test our specification against test-vectors from other
Noise implementations. Second, we use recursive functions to model protocols and
messages of arbitrary length, even though in practice, we may only care about the 59
protocols in the current Noise specification. Third, our code is structured as a protocol
interpreter, and hence provides a single generic functional specification for all Noise
protocols.

These three features are in contrast with prior formal models of Noise protocols
that were written for various security analyses [253, 261–263]. These models ignore
many low-level protocol details, are not precise at the byte level, and are not testable.
Their modeling languages cannot handle generic recursion or protocol interpreters, and
so require a separate model for each Noise protocol. We believe our F? specification
more closely captures the spirit of Noise and serves as a formal companion to the Noise
specification.

4.2.3 Noise Protocol Security Guarantees

Different Noise protocols offer different security guarantees. Even within a single
protocol, the confidentiality and authentication guarantees obtained by the initiator
and responder often differ. These guarantees typically improve with each handshake
message and stabilize after the handshake completes. For example, IKpsk2 allows
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application data to be sent both during the handshake (d0, d1) and after the handshake
(d2, d3, ...), and each of these messages has different security guarantees. The Noise
specification [260] defines 3 levels of authenticity (A0-A2) and 6 levels of confidentiality
(C0-C5). Figure 4.2 lists the security levels at each stage of our three protocol examples,
and Appendix A lists them for all 59 Noise patterns.

Payload Authentication Properties. The three authentication levels are:

• A0: No authentication

• A1: Sender authentication vulnerable to Key Compromise Impersonation (KCI)
attacks

• A2: Sender authentication without KCI attacks

Consider a Noise protocol session between A and B, where B receives a message M

at authentication level A2 (supposedly) from A. If B successfully decrypts this message,
it has the guarantee that the message was indeed sent by A, unless the long-term static
key of A (static Diffie-Hellman private key and/or PSK) has been compromised (i.e.,
leaked to the attacker) before the message was received. Authentication level A1 is
weaker: it only guarantees message authenticity if the static keys of both A and B are
non-compromised.

For a more formal illustration, in a prover like ProVerif, authentication level 1 would
correspond to a security query written in terms of events triggered by the sender, receiver,
and the adversary. The sender A triggers Sent(A,B,M) before sending a message; the
receiver B triggers Recv(B,A,M) after processing the message; the adversary triggers
LongTermCompromised(P) whenever it compromises the static keys of a principal P .
(We assume that ephemeral keys are never compromised.) The resulting security query
is written as follows:

query A:prin, B:prin, M:bitstring;
event(Recv(B,A,M)) =)

event(Sent(A,B,M)
|| event(LongTermCompromised(A))
|| event(LongTermCompromised(B))

The query for authentication level 2 simply removes the last line:

query A:prin, B:prin, M:bitstring;
event(Recv(B,A,M)) =)

event(Sent(A,B,M)
|| event(LongTermCompromised(A))
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For reference, these queries correspond closely to the queries generated by a prior
analysis of Noise in ProVerif [262].

For example, in NX, the initiator is never authenticated, so messages in the forward
direction (!) in Figure 4.2 always have authentication level A0. The responder is
fully authenticated and so its messages to the initiator are at level A2. In X and
IK, the first message is authenticated by the initiator, but authentication is based
on static-static Diffie-Hellman (ss), which means that if the responder’s static key is
compromised, an attacker can impersonate the initiator to the responder, resulting in
a KCI attack. Hence, the authentication level is A1 for forward messages (!), until
the third message when the static-ephemeral Diffie-Hellman (se) token strengthens the
initiator’s authentication level to A2.

Payload Confidentiality Properties. The six confidentiality levels, in increasing
order of strength, are as follows:

• C0: No confidentiality

• C1: Confidentiality only against passive adversaries

• C2: Confidentiality against active adversaries, with weak forward secrecy against
sender static compromise

• C3: Weak forward secrecy against sender and receiver static compromise

• C4: Strong forward secrecy unless sender static was compromised before message

• C5: Strong forward secrecy

Of these, the first two levels offer very weak confidentiality, in that an active
network adversary can read a payload sent at level C0 or C1. Levels C2-C5 offer
incremental degrees of forward secrecy, depending on which subset of static keys may
be compromised and when. C2 offers confidentiality as long as the sender’s ephemeral
key and the recipient’s static keys remain non-compromised. C3 additionally allows the
receiver’s static key to be compromised as long as the peer ephemeral public key at
the sender corresponds to an non-compromised ephemeral private key at the recipient.
C4 allows the sender and recipient’s static keys to be compromised after the message
is sent. C5 provides confidentiality even if the sender’s static keys were compromised
before the message was sent.

In a tool like ProVerif, encoding forward secrecy properties requires the use of phases
to enforce an ordering between protocol messages and compromise events. For example,
we would run the target protocol session in phase 0 and transition to phase 1 at the
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end. We would then allow the attacker to compromise static keys in both phase 0 and
phase 1, and state secrecy queries for each confidentiality level in terms of when these
keys can be compromised. (As usual, we disallow the compromise of ephemeral keys.)
Hence, to model level C4, we write a ProVerif query of the form:

query A:prin, B:prin, M:bitstring;
(attacker_p1(M) && Sent(A,B,M)) =)

event(LongTermCompromised_p0(B))
|| event(LongTermCompromised_p0(A))

That is, messages sent from A to B are confidential in phase 1 unless the static keys of
A or B were compromised in phase 0. The query for C5 is stronger, it removes the last
disjunct, and hence guarantees confidentiality even if A were compromised in phase 0
(when the session is still running.)

In Figure 4.2, X offers confidentiality at level C2 because there is no fresh ephemeral
provided by the recipient. NX offers strong forward secrecy at level C5 for messages to
the responder, but only level C1 for messages to the unauthenticated initiator. IKpsk2
provides level C5 confidentiality in both directions from the third message. However,
the first message only offers level C2 (like X) and the second message only offers level
C4 since an attacker who knows the responder’s static private key and PSK will be
able to forge the first message, record the second message, and later compromise the
initiator’s static key to obtain the session key and decrypt the payload.

We define an F? function that computes the authentication and confidentiality levels
for each message in each handshake_pattern (see Appendix A). We confirm that it
agrees with the Noise specification on the 38 protocols annotated in the document, and
we also compute levels for the 21 PSK patterns not annotated in the specification. In
Section 4.5, we show how these security levels are mapped to precise security goals
stated as trace properties and we prove that our protocol specification meets these
goals.

4.2.4 A High-Level API for Noise

A full protocol implementation has to handle many security-critical details beyond
message processing. For example, in the NX protocol, when the initiator receives the
responder’s static key in the second message, it has to validate this key. Otherwise,
there is no guarantee it is talking to the intended responder and all authenticity and
confidentiality guarantees are lost. Similarly, in X and IKpsk2, the initiator static key
needs to be validated against some database of known initiators. In PSK-based protocols
like IKpsk2, the responder does not know what PSK to use until it sees the initiator’s
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static key; so we need a way for the responder to dynamically retrieve and validate
a PSK based on a protocol message. An implementation that skips or incorrectly
implements these key validation steps becomes vulnerable to serious attacks. However,
none of these validation steps are documented in the Noise specification and so are left
for the application layer to handle.

It is unrealistic to expect an application programmer who uses Noise to have the
intimate knowledge needed about a specific Noise protocol in order to directly use the
messaging functions, perform all the required validation steps, and know when it is safe
to send or receive data.

We address this gap by formally specifying (and implementing) a high-level API
that combines several layers: a session-based API that hides message-level protocol
details, secure key storage with user-provided policies for key management, built-in
validation steps and a defensive user-friendly interface that provides clear guidance on
when it is safe to send or receive data over a Noise session. For example, sending secret
application data after the first message of NX would be disastrous, but may be safe
with IKpsk2. Section 4.4 describes our implementation of this high-level API in C.

4.3 Implementing a Noise Compiler in Low?

Our specification (Section 4.2) may run via the OCaml backend of F?, which we use
for testing and spec-validation purposes. This execution path suffers, however, from
slow performance: in F? specifications, integers compile as infinite-precision bignums;
sequences compile to persistent functional lists; and execution relies on OCaml’s runtime
system and garbage collector.

We now set out to write a low-level, efficient implementation of Noise protocols
that does not suffer from such performance shortcomings. This section focuses on a
novel technique called “hybrid embeddings”, a key technical ingredient that allows us to
author low-level code that remains parametric over the choice of Noise pattern, in a
fashion similar to the interpreter. With hybrid embeddings, we verify the low-level code
once then generate for free any number of specialized implementations for any Noise
patterns: doing so, we minimize the verification effort while still guaranteeing low-level
performance.

4.3.1 Warm-up: Low? implementation of SS

For our efficient, low-level implementation of Noise protocols, we use Low?. Low? is a
subset of F?; or, said differently, Low? is a shallow embedding of a well-behaved subset
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of C into F?. Thanks to F?’s powerful effect system, Low? defines a CompCert-like C
memory model, which captures heap- and stack-based allocations. A set of distinguished
types, combinators and libraries provides users with working tools to operate on mutable
arrays, machine integers, const pointers, and so on. Low? has been used for cryptographic
libraries [127, 233], providers [128], protocol record layers [269, 270] and parsers [256].

In contrast to Section 4.2, where functions were pure, Low? functions use a new set
of effects: Stack and ST. Consider the function that performs the required processing
for the SS token.

inline_for_extraction noextract
let send_SS_m (nc: iconfig) (ssdhi: ssdh_impls nc)
(smi: meta_info) (initiator: bool) (is_psk: bool)
(st: valid_send_token_hsm nc is_psk SS smi):
Stack (rtype (send_token_return_type smi is_psk SS))
(requires (fun h ->

live h st.static /\ live h st.remote_static /\
not (g_is_null st.static) /\ not (g_is_null st.remote_static) /\
loc_disjoint (loc st.static) (loc st.remote_static) /\ ... /\
sym_state_invariant st.sym_state /\ nc.dh_pre /\ ...))

(ensures (
let st0_v = eval_handshake_state_m h0 st smi in
let st1_v = eval_handshake_state_m h1 st (smi_init_sk smi) in
let r_v = Spec.send_message_token initiator is_psk SS st0_v in
match to_prim_error_code r, r_v with
| CSuccess, Res (..., st1'_v) -> st1_v == st1'_v /\ ...
| CDH_error, Fail DH -> True
| _ -> False))

= [@inline_let] let priv = hsm_get_static st in
[@inline_let] let pub = hsm_get_remote_static st in
ssdhi_get_dh_update ssdhi BS.lbytes_empty smi priv pub st

Many of the parameters resemble the ones we saw earlier (Section 4.2). The iconfig,
for implementation configuration, extends a spec-level config with low-level specific
preconditions such as “our DH implementation requires AVX2”. The ssdhi parameter
contains our choice of implementation for cryptographic operations related to the
symmetric state and DH; the Low? code is not only generic over the choice of algorithm
(like the earlier specification), it is also generic over the choice of implementation. As
an example, if the iconfig commits to Curve25519 for the DH algorithm, our code can
operate either with HACL?’s Curve51 or Curve64 implementation. The smi parameter
stands for “state meta-information”; it contains statically-known information, such as
whether at this point of the handshake a symmetric key has been derived or not; and it
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also contains the nonce (sequence number) to be used for the cryptographic operations.
Finally, initiator and is_psk are similar to the parameters we saw earlier (Section 4.2).

The function signature exhibits typical features of Low?. The st argument represents
the low-level state of the protocol, which can be reflected in a given heap h0 as a high-level
state, using eval_handshake_state_m h0 st smi. The Stack return effect indicates that
the function is valid vis-à-vis the C memory and only performs stack allocations (this
latter restriction can be lifted by using the ST effect). The pre-condition covers spatial
(disjointness) and temporal (liveness) preconditions; as well as functional correctness
requirements, such as the symmetric state invariant and the implementation-specific
preconditions. In the post-condition, we elide memory-related predicates (e.g.: only
the protocol state is modified by a call to this function) for clarity. We focus instead
on functional correctness: st0_v reflects low-level state st as a spec-level state before
calling send_SS_m; similarly, st1 reflects st after calling the function. If we execute the
interpreter on st0 and obtain st1', then both st1' and st1 coincide, i.e., if the specification
guarantees success, so does the low-level implementation with the same result; if the
specification errors out, so does the low-level implementation; no other outcome is
allowed.

4.3.2 A Meta-Programmed Low? Implementation

Inspired by the generic spec-level interpreter, we now write an even more generic
low-level function that not only works for any choice of algorithm, implementation,
responder and PSK, but also works for any Noise token.

inline_for_extraction noextract
let send_message_token_m nc ssdhi smi initiator is_psk

tk st out: (rtype (send_token_return_type smi is_psk tk))
= match tk with

| S -> send_S_m nc ssdhi smi initiator is_psk st out
| E -> send_E_m nc ssdhi smi initiator is_psk st out
| ... -> ... (* identical for SS, EE, SE, ES, PSK *)

The send_message_token_m function above attains the same level of genericity as
the specification. Even the return type of the function is generic: send_token_return_type
captures the fact that SS returns an error code (for DHs that compute to 0), whereas S
does not. (Here, our specification is more precise than the Noise specification, which
leaves it up to the user to determine whether a DH that computes 0 is an error.) Our
function can thus be used for all Noise protocols: the initial match acts as an interpreter,
examines the Noise token, then dispatches execution to a suitable set of Low? functions.
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Our style saves a tremendous amount of verification effort: rather than replicating
the effort for 59 protocols, we extract the commonality, capture it with dependent
types, and proceed to write send_message_token_m once and for all. The challenge
now remains to ensure that the function generates valid C code that eliminates all
runtime checks on the nature of the token.

To that end, we rely on implicit staging and compile-time partial evaluation via
F?’s normalizer. (We use meta-level and compile-time interchangeably.) The first six
parameters of the function are meta-parameters: once a Noise protocol is chosen, their
concrete value is known at compile-time; and the F? compiler is capable of performing
enough partial evaluation at compile-time that all uses of these parameters disappear
before the code is even extracted to C. We indicate that the function features meta-level
computations with the _m suffix.

Consider, for instance, the X protocol we saw earlier. At compile-time, we pick
concrete values for the choice of algorithms (nc) and implementations (ssdhi). For the
first handshake message, we call send_message_token_m, with smi.has_key = false,
smi.nonce = 0, initiator = true, is_psk = false and of course tk = E. Thanks to the
inline_for_extraction keyword, F? reduces the definition of send_message_token_m; the
match reduces away, leaving only a call to send_E_m. This latter function itself further
reduces: for instance, any statement of the form if is_psk disappears, meaning we ignore
the symmetric key generation induced by PSK patterns. Once partial evaluation is
done, the code contains only the bare minimum set of operations needed for the first
token E of the X protocol, and all meta-parameters are gone.

4.3.3 Hybrid Embeddings

Looking back at Section 4.2, we can think of our earlier specification as an interpreter for
Noise patterns; or, dually, as an evaluator defining the semantics of a deeply embedded
domain-specific-language (DSL), in our case the language of Noise patterns. Unlike
shallow embeddings, deep embeddings operate on a representation of the target language
within the host language; doing so, they enjoy a great deal of flexibility since they are
not confined to the syntax of the host language.

The match in the function above is a meta-level match that operates on the deeply
embedded representation of Noise patterns, and gets partially evaluated away. We dub
this style a hybrid embedding: the meta-level code operates over a deep embedding
(the Noise patterns), but after partial evaluation, all that is left is a shallow embedding
(the Low? code).

The hybrid style allows us to stage and automate the production of Low? code;
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rather than writing Low? code by hand, we embed at meta-time a protocol compiler
that executes on F?’s compile-time reduction facilities. This style is already useful for
send_message_token_m; but there is no reason to limit ourselves to simple matches
and ifs. We now show how to execute arbitrary pure F? code at meta-time, including
recursion, to completely automate the production of a specialized Noise protocol
instance.

[@@ strict_on_arguments [5]] inline_for_extraction noextract
let rec send_message_tokens_m (nc: iconfig) smi initiator

is_psk pattern st outlen out =
match pattern with
| Nil ! success _
| tk :: pattern' !

[@inline_let] let tk_outlen = token_message_vs nc smi tk in
let tk_out = sub out 0ul tk_outlen in
let r1 = send_message_token smi initiator is_psk tk st tk_out in
if is_success r1 then
let outlen' = outlen -! tk_outlen in
let out' = sub out tk_outlen outlen' in
[@inline_let] let smi' = send_token_update_smi is_psk tk smi in
let r2 = send_message_tokens_m send_message_token

smi' initiator is_psk pattern' st outlen' out' in
compose_return_type smi is_psk true pattern' tk r2

else
compute_return_type smi is_psk true tk pattern' r1

The function above now operates over a list of tokens; that is, it generates Low?

code for an entire Noise handshake pattern. Naturally, the function cannot extract as-is:
operating over pure, persistent lists in low-level efficient, idiomatic C is a no-go; hence the
noextract keyword. The goal is to ensure that the subset of send_message_tokens_m
that performs a (pure) recursion over the argument pattern (denoted in bold) is always
evaluated away at compile-time when applied to constant arguments. To this end,
we allow F? to unfold recursive definitions (elided); to prevent infinite compile-time
recursion, we restrict the unfolding to applications where the fifth argument (pattern) is
concrete, via the strict_on_arguments keyword. The inline_let attribute indicates pure
computations to be inlined at extraction-time. We use the keyword for meta parameters
or constants computed from meta parameters.

The function is verified once and for all, meaning that we now have a verification
statement for any list of noise tokens. At extraction-time, the user applies the function
to five concrete arguments. If pattern is [ E; ES; S; SS ], then after a few steps of
reduction, we obtain:
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let r1 = send_message_token ... E ... in
if is_success r1 then ...

let r2 = send_message_tokens_m ... [ ES; S; SS ] ... in ...

As computing E always succeeds, is_success r1 reduces to true, in turn eliminating the
else branch entirely. Partial evaluation then continues until all meta-level code has
disappeared; structural recursion over the list of tokens is over; and all that is left is a
sequence of efficient Low? calls that implements the specification for the given list of
tokens.

We use this style of hybrid embedding all throughout our low-level protocol code
implementation, which allows us to substantially reduce the verification effort. The
following section (Section 4.4) shows how to extend this style to generate the entire
state machine of a Noise protocol.

4.3.4 Hybrid Type Definitions and Function Signatures

We use hybrid embeddings further to optimize internal type definitions and user-facing
functions.

For type definitions, we insist on generating C code that contains no superfluous
fields. This is useful not only in case the code’s internals are audited; but also to ensure
that no extra space is consumed in, e.g., the internal state of the handshake. To that
end, our types reduce at meta-time; consider, for instance:

type handshake_state_t nc smi ... is_psk ... = {
...
psk: if is_psk then lbuffer ... else unit;
...

}

If the chosen Noise protocol requires it, the psk field is an array of bytes. If the Noise
protocol does not use a PSK, the meta-programmed type reduces to unit, which is
then guaranteed to be eliminated by KReMLin [264], the Low?-to-C compiler. This
eliminates an always-NULL, superfluous field.

For user-facing functions, we apply a similar design pattern and ensure that no
“dummy” arguments are ever offered in the public API: such arguments cause user
confusion, make code reviews more difficult, and generally diminish trust in our API.
Anticipating slightly, consider this initialization function that we present as part of our
user-facing API (Section 4.4):

let session_p_create (idc : valid_idc) (initiator : bool) ...
(dvp : device_p idc) (peer_id : opt_pid_t idc initiator) : ST ... = ...
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As mentioned in Section 4.2, we may not immediately know a peer’s identity:
whether peer_id is needed at initialization-time depends on the protocol. Rather than
rely on an implicit invariant that peer_id will be ignored for some patterns, we instead
rely on a meta-programmed type opt_pid_t. In the case of XX, the type opt_pid_t
becomes unit. In the case of IKpsk2 for the initiator, the type becomes lbuffer uint8.
KreMLin guarantees that function arguments of type unit are eliminated: this means
we offer a custom API for each Noise protocol. This directly supports our goal of
generating robust user-facing APIs that leave no room for user error.

4.4 A Complete Verified Noise Library Stack & API

Section 4.3 describes the core handshake actions, as captured by the Noise Protocol
Framework. Yet, this forms only a small, core part of a Noise library. We now review
the remainder of our Noise Protocol implementation and describe the many APIs and
library features we wrote in order to provide a complete, self-contained, user-proof,
verified Noise protocol stack.

A meta-programmed state machine. The core handshake actions (Section 4.3)
each implement a single line of a Noise Pattern. We now tie together these individual
protocol actions into two state machines: one for the initiator and one for the responder.
These basic state machines are trivially induced by the steps of the handshake: they are
linear, and each valid transition advances the initiator or responder to their next step.

The send_message_tokens_m function from Section 4.3 takes many run-time param-
eters; we group them in a single type definition, dubbed state_t. The state also holds
the current step in the handshake, i.e., the current state of the machine. Continuing
with hybrid embeddings, a generic function state_t_handshake_write_m advances the
state machine, and returns a fresh state_t, for any choice of pattern, step i, or initiator
vs. responder.

(* The low-level state machine type: encapsulates keypair, chaining

hash state, symmetric state, current handshake step, psk, etc. *)

val state_t: isconfig -> initiator:bool -> Type0

(* Simplified signature *)

val state_t_handshake_write_m (isc: isconfig) (smi: smi)
(i: nat { i < isc.pattern.messages })
(payload_len: size_t) (payload: lbuffer uint8)
(st: state_t isc (i%2=0) { ... })
(outlen: size_t) (out: lbuffer uint8):
Stack (s_result_code (st:state_t isc (i%2=0) { ... }))
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The signature of the function is familiar; the earlier iconfig is now wrapped in an
“implementation state config” isc, which contains the entire noise pattern, along with
meta-parameters that determine the shape of the final C struct (Section 4.3.4). The
function is once again written in the hybrid embedding style; the meta-parameter i
allows the caller to specialize the function for the i-th step of the handshake; this in
turns allows us to compute, at compile-time, whether the message originates from the
initiator (i%2=0) or the responder (i%2=1). The meta-parameters also determine the
nature of the return type, which is derived from the series of return types for each
token. The function returns a fresh state st1 under the successful Res case. In a fashion
similar to send_message_tokens_m, the low-level stateful function coincides with the
outcome st1'_v of the spec-level interpreter. (Full definitions can be found in [271].)

The parameter i represents the current step of the handshake at meta-time; but
this information is also carried at run-time within the state st. A static precondition
requires the compile-time i to be consistent with the step stored at run-time within st.
This key technical trick enables meta-time computations over the step i, which allows
us to write a single transition function. The function can be specialized at meta-time
for any step i; doing so produces a Low? function that can only be called when the
current run-time step coincides with the meta-time i.

Equipped with this extremely generic function, we now use the hybrid embedding
style to meta-program state machine management: at compile-time, we generate a
series of run-time tests for each (statically-known) possible state of the handshake; if
a run-time test succeeds, the code proceeds to execute state_t_handshake_write_m,
specialized at compile-time for the specific step of the handshake. The result is a
higher-level function that can generate the state machine of either the initiator or the
responder, for any Noise pattern. We have effectively embedded at meta-time within
F? a compiler that from a deeply embedded Noise pattern generates the corresponding
shallowly-embedded Low? state machine.

A user-proof state machine. As it stands, the state machine cannot be exposed to
the user. First, it returns a new state, rather than modifying a heap-allocated state
through a pointer; second, it does not record stuck states, meaning that the user can
make a mistake by ignoring the Failure and calling the function a second time.

We now transform this low-level state machine into a user-proof one. In the process,
we also enrich the API with features for device, peer and key management. We dub
this second API layer the “device API”. We encapsulate the earlier state_t in a device
state dstate_t, which handles Low? region-based memory management and ownership
(elided), holds session and peer names (provided by the user), and maintains a device
state for peer management.
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[@CAbstractStruct] noeq type dstate_t idc =
| Initiator: state:state_t idc.isc true -> session_name:name_t

-> peer_name: name_t -> device: device_t -> ...
-> dstate_t ...

| Responder: state:state_t idc.isc false -> (* similar *)

noeq type dstate_p ... = B.pointer_or_null dstate_t

Introducing dstate_p, a potentially-null pointer, serves several purposes: the C code
becomes more idiomatic, now manipulating a pointer to a structure instead of passing
structures by value; we can now have a NULL case which accounts for errors, e.g. a
point at infinity showing up at initialization time; and we can introduce a modicum
of abstraction, by using the CAbstractStruct keyword which instructs KreMLin to only
emit a typedef in the generated header, thus preventing clients from directly allocating
or accessing a dstate_t. We lift the state machine to operate on dstate instead of state,
and obtain the following signature.

val handshake_write_m (idc: valid_idc)
(payload_len: size_t) (payload: lbuffer uint8 payload_len)
(st: dstate_p idc) (outlen: size_t) (out: lbuffer uint8 outlen):
ST ds_error_code_or_success (requires (fun h0 -> ...))
(ensures (fun h0 res h1 ->

(* omitted: modifies clause, liveness, invariants, etc. *)

let st_v0 = dstate_p_v h0 st in
let payload_v = as_seq h0 payload in
let res_v = handshake_write payload_v st_v0 in
match res with
| CSuccess -> Res? res_v /\ (

let Res (out'_v, st1'_v) = res_v in
dstate_p_v h1 st == st1'_v /\ as_seq h1 out == out'_v /\
... /\ not (dstate_p_is_gstuck h0 st))

| _ -> ... dstate_p_is_gstuck h1 st))

The only meta-parameter is idc, which subsumes the previous state config, and
indicates whether we are compiling the initiator or the responder’s state machine. Unlike
state_t_handshake_write_m, this state machine from the device layer is safe to use
from C. If an error happens, we modify the step number to a special value that indicates
that the machine is stuck, before returning an error. Any further attempt to use this
state will leave the machine in the error (stuck) state.

Device API and Session Management. In addition to the state machine, the
device state dstate_t also encapsulates device management. A device holds a set of
peers, along with a table that indexes them by identifier; it also holds the local static
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identity, and provides a high-level API which enables the user to add, lookup, update or
remove peers. Each peer contains detailed information, such as their remote static and
pre-shared keys. The library is written from scratch, since the existing Low? libraries
for, e.g., linked lists, were proof-of-concept-quality and not intended to be used within
a large development. The result is a relatively simple API, wherein the user provides a
private key, an implementation-specific prologue and a C string for the device name.

device_t *device_create(
uint32_t prologue_len,
uint8_t *prologue,
const char *name,
uint8_t *spriv);

peer_t *device_add_peer(
device_t *dvp,
const char *name,
uint8_t *rs,
uint8_t *psk);

Given a device, the user can create a new session with a chosen peer, in the role of
either the initiator or the responder.

session_t *create_IKpsk2_initiator(device_t *d, uint32_t peer_id);
session_t *create_IKpsk2_responder(device_t *d);

We mention at the end of Section 4.2 that different Noise protocols handle identity
management very differently; and that mishandlings can lead to serious vulnerabilities.
We rule out these errors by construction in our API, using hybrid embeddings (Sec-
tion 4.3.4) to meta-program the signature of the API functions. For instance, IKpsk2
demands a peer identity at initiator-creation time; this is reflected by the presence
of the peer_id argument above. Conversely, for XX, both parties learn the remote’s
identity during the handshake, and the peer_id argument is absent from the C function
signature.

This in turn begs the question of what should be an acceptable policy to deal
with receiving a peer’s public static key over the network, when the key is currently
unknown to the device. The answer varies, and generally requires application-specific
error handling. For instance, in the case of WireGuard, an unknown user simply cannot
connect and the handshake is aborted. For WhatsApp, conversely, the application
registers the peer with the device, and proceeds with the conversation.

In Noise?, we delegate these decisions to the user of our library via a policy function
and a certification function. The former is a constant in practice, and simply determines
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whether unknown keys may be accepted. The latter receives the decrypted payload
of the message which should contain a certificate for the key, and from it determines
whether to certify or invalidate a key. This behavior is triggered upon receiving an S
token without a corresponding entry in the peer table.

Long-term key storage. To make sure our library is self-contained and ready to
be used, Noise? incorporates a verified long-term (e.g., on-disk) key storage feature.
Concretely, the device state can be serialized and deserialized, which includes peer list
and static key. We use an AEAD construction, with the device and peer names as
authenticated data. In order to avoid nonce reuse, each serialization generates a fresh
nonce to be fed into the AEAD construction; the nonce is stored on disk, so that it can
be reloaded at decryption-time. Our implementation comes with proofs of correctness
for the parser and serializer, namely that they are the inverse of each other. Whether
on-disk storage is enabled is up to the user; should they enable it via a meta-parameter,
the resulting C code will contain, among other things, a create_device_from_secret
that takes an encryption key, encrypted data, and returns a fresh device (or NULL if
decryption failed). We delegate the handling of the on-disk encryption key to the user
of our library.

A High-Level API with Message Encapsulation. To provide an industrial-grade,
error-proof Noise library, there remains one last issue to address: right now, the user
might inadvertently send messages at a lower level of confidentiality or authenticity than
intended. This may happen either because the user has misunderstood the guarantees
provided by a given Noise pattern; or because they sent early data in the handshake,
before the full guarantees were established (Figure 4.2).

We revisit the Noise confidentiality levels (Figure 4.2) and expose an informative
subset of them to the user: “public” (C0), “known remote replayable” (C2), “known
remote weak forward” (C3) and “known remote strong forward” (C5). Then, we abstract
away the type of messages and impose that the user go through a constructor and a
destructor. These not only require the user to specify a level, but also to commit to a
session and a peer, which rules out improper handling of data.

encap_message_t *pack_with_conf_level(
uint8_t requested_conf_level,
const char *session_name,
const char *peer_name,
uint32_t msg_len,
uint8_t *msg);

bool unpack_message_with_auth_level(
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uint32_t *out_msg_len,
uint8_t **out_msg,
char *session_name,
char *peer_name,
uint8_t requested_auth_level,
encap_message_t *emp);

Encapsulated messages can then be sent through an API that wraps handshake_write_m
and takes care of packing and unpacking. When sending, we check that the session
sn has reached at least the desired confidentiality level; when receiving, we check that
the requested authentication level is at most the session’s current level. The high-level
rcode captures both state machine errors (stuck), and authenticity or confidentiality
errors.

rcode session_write(
encap_message_t *input,
session_t *sn,
uint32_t *out_len,
uint8_t **out);

rcode session_read(
encap_message_t **out,
session_t *sn,
uint32_t *inlen,
uint8_t *input);

This concludes the tour of our Noise protocol implementation. From the protocol
actions of Section 4.3, we derived a state machine implementation that properly handles
failures and is entirely meta-programmed. We extend this state machine with runtime
support for peer and device management, peer authentication policies, and on-disk
long-term key storage. We expose the API via safe functions that perform confidentiality
and authenticity run-time checks at the API boundary to rule out errors from unverified
C clients. We obtain the first verified implementation for a full secure channel protocol
stack, complete from cryptographic primitive to its user-facing API.

4.5 Symbolic Security Proofs for Noise
?

As explained in Section 4.2, the Noise specification [260] describes the expected security
guarantees for each Noise protocol in terms of authentication (A0-A2) and confiden-
tiality levels (C0-C5). Several analyses have shown that various Noise protocols meet
these guarantees against classic Dolev-Yao-style active network adversaries [272], using
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symbolic analysis tools like ProVerif [262] and Tamarin [261]. Although these analyses
provide comprehensive results for the protocol messaging code, they do not cover
important details like message formats, protocol state machines, or key management,
which are crucial to the security of full Noise implementations. In this section, we close
this gap by proving the symbolic security of our F? Noise specification, relying on a
framework called DY? [265].

4.5.1 Background on DY?

DY? Framework. DY? is a set of F? libraries that enables the symbolic security
verification of protocol code written in F? [265]. In effect, we take our Noise protocol
specification from Section 4.2 and replace all calls to concrete cryptography, random
number generation, and state storage with the symbolic libraries provided by DY?,
to obtain a symbolic security specification in F? that is functionally equivalent to our
original specification. We then use the proof patterns provided by DY? to prove that
our specification satisfies the security guarantees expected by Noise. Our proofs account
for an unbounded number of protocol sessions and an active Dolev-Yao adversary [272].

DY? has previously been used to verify various protocols (including Signal [265])
but a key novelty of our approach is that we build a generic security proof for a Noise
protocol interpreter to obtain security guarantees for all Noise protocols in one go. This
kind of parameterized inductive proof is out of reach of tools like ProVerif and Tamarin,
which instead have to rely on per-instance verification of each Noise protocol [261, 262].
The trade-off is that DY? is not as automated as these tools, and it does not yet support
the verification of equivalence properties, needed to state goals like identity privacy.

We refer the reader to the DY? paper [265] and public code repository [273] for its
detailed presentation. Below, we briefly discuss the main elements used in our Noise
security proof.

Trace-Based Semantics. A DY? program consists of a set of stateful protocol
functions (e.g. session_create, handshake_write) that can be executed by each protocol
participant or principal (e.g. "alice","bob") to initiate or continue any number of
protocol sessions. Each session is locally identified by an integer sid; by convention, sid
0 is used for long-term keys.

The interleaved distributed execution of protocol sessions across multiple principals
is modeled by an append-only global trace that records every message sent between
principals, every freshly generated random value, every (long-term and ephemeral)
session state stored by each principal, and every security event triggered by a principal
to mark the progress of a protocol session. The index of an entry in the global trace
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can be seen as a unique immutable timestamp, so we can state, for example, that an
event was triggered at a particular trace index (event_at i (Send A B M)) and that this
occurred before another event (event_at j (Recv B A M) ^ i < j).

For example, in a run of the Noise IKpsk2 protocol between I and R, after I sends
the first message, the global trace contains an entry for the generation of I’s ephemeral
key (x), the message from I to R, and I’s handshake state after this message. Once
R processes the first message and responds with the second message, the trace is
extended by another entry for the responder ephemeral, the second message, and the
handshake state stored at R. When the handshake is complete, both parties discard
their session-specific handshake states and store new session states containing the final
cipher states.

The attacker is modeled as an F? program that acts as a global scheduler: it
drives the execution of all protocol sessions by calling protocol functions at different
principals. It has all the capabilities of an active network attacker: it can read and
write messages between any two principals in the global trace, it can generate its
own fresh random values, and it can call cryptographic functions using values it has
learned. The attacker can also dynamically compromise any session state stored at
any principal to obtain its contents, and this action is marked with a new entry in
the trace (compromised_at i "alice"sid). Hence, by compromising the long-term key
session (sid=0) at a principal, the attacker can learn the principal’s static Diffie-Hellman
and pre-shared keys. Alternatively, by compromising a session corresponding to an
ongoing Noise handshake, the attacker can learn the current handshake state, including
any private ephemeral keys. However, the attacker cannot guess random values, or
invert encryption unless it either has the key or has explicitly compromised it. The
attacker’s knowledge at a particular timestamp in the global trace is formalized by an
inductive predicate: attacker_knows_at i m.

4.5.2 Formalizing Payload Security Goals as Trace Properties

We formalize each of the 3 authentication levels (A0-A2) and 6 confidentiality levels
(C0-C5) of Noise as trace properties, i.e., predicates over the global trace.

Authentication Goals. Suppose that before sending an authenticated payload,
each Noise participant A triggers an event of the form AuthSent A B M L indicating
that it is sending a message M to B at authentication level L. After successfully
processing an authenticated payload M in a session sid, the recipient B triggers an
event AuthReceived B sid A M L. Then, the authentication goal for messages sent at
Noise authentication level 1 can be written as a trace property:
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1 let trace_property_A1 =
2 forall i sid A B M. event_at i (AuthReceived B sid A M 1) ==>
3 (exists j. j < i /\ event_at j (AuthSent A B M 1)) \/
4 (exists k. k < i /\ (compromised_at k A 0 \/
5 compromised_at k B sid \/
6 compromised_at k B 0))

This trace property says that whenever B accepts a message M from A at time i

(with authentication level A1), either this must be an authentic message sent by A at
time j < i, or else the static key of A or the ephemeral session state at B or the static
key of B must have been compromised before i. The disjunct on line 5 indicates the
possibility of a KCI attack: i.e., the loss of message authenticity when the recipient B’s
static key is compromised. To obtain the trace property for authentication level A2, we
simply remove this disjunct (line 5) to require the absence of KCI attacks:

1 let trace_property_A2 =
2 forall i sid A B M. event_at i (AuthReceived B sid A M 2) ==>
3 (exists j. j < i /\ event_at j (AuthSent A B M 2)) \/
4 (exists k. k < i /\ (compromised_at k A 0 \/
5 compromised_at k B sid)

Level A0 provides no guarantees:

1 let trace_property_A0 = True

Confidentiality Goals. Confidentiality guarantees are stated as predicates over
the global trace that describe the conditions in which a protocol secret may become
part of the attacker’s knowledge. Suppose that each Noise participant A triggers an
event ConfSent A sid B sid' M L before sending a fresh random secret message M at
confidentiality level L to B, where sid and sid' are the session indexes at A and B.
Then, the confidentiality level C4 is written as the following trace property:

1 let trace_property_C4 =
2 forall i j sid sid' A B M.
3 (event_at i ConfSent A sid B sid' M 4 /\
4 attacker_knows_at j M /\ i <= j) ==>
5 (exists k. k < i /\ (compromised_at k B 0 \/
6 compromised_at k A 0)) \/
7 (exists l. l <= j /\ (compromised_at l A sid \/
8 compromised_at l B sid')

This predicate says that if a secret message M sent at time i (and confidentiality
level C4) from a session sid at A to a session sid' at B, and M subsequently becomes
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known to the adversary at time j, then either the static key of A or the static key of B
was compromised before the message was sent at i or else one of the two ephemeral
protocol session states (sid, sid') was compromised before j.

The strongest variant of forward secrecy provided by Noise (C5) limits static key com-
promise to the recipient; that is, we drop the disjunct on line 5 (compromised_at k A 0)
allowing the sender A’s static key to be compromised at any time without affecting the
confidentiality of M :

1 let trace_property_C5 =
2 forall i j sid sid' A B M.
3 (event_at i ConfSent A sid B sid' M 5 /\
4 attacker_knows_at j M /\ i <= j) ==>
5 (exists k. k < i /\ compromised_at k B 0) \/
6 (exists l. l <= j /\ (compromised_at l A sid \/
7 compromised_at l B sid')

The trace properties for levels C1-C3 provide weaker forward secrecy guarantees
than C4 by restricting the compromise scenarios in which confidentiality is guaranteed.
In these scenarios, the sender does not know if the peer ephemeral public key it is using
actually belongs to some recipient session sid' of B; instead this public key may have
been provided by the attacker. So we use a different event ConfSentEph A sid B eph M L,
where instead of the peer session sid', A marks the (possibly attacker-controlled) peer
ephemeral key which it used to derive the encryption key.

The confidentiality guarantee of C1 then states that the message is secret only if
this peer ephemeral key is confidential:

1 let trace_property_C1 =
2 forall i j sid eph A B M.
3 (event_at i ConfSentEph A sid B eph M 1 /\
4 attacker_knows_at j M /\ i <= j) ==>
5 (exists l. k <= j /\ (compromised_at k A sid \/
6 (exists sk. eph = PK(sk) /\
7 attacker_knows_at k sk)))

That is, we have no confidentiality if the attacker actively interferes with the session to
provide its own public key eph. Note that this means that confidentiality is lost even if
none of the recipient B’s keys have been compromised.

C2 provides a stronger guarantee that links the confidentiality of the message to
static key compromise at the recipient B:

1 let trace_property_C2 =
2 forall i j sid eph A B M.
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3 (event_at i ConfSentEph A sid B eph M 2 /\
4 attacker_knows_at j M /\ i <= j) ==>
5 (exists k. k <= j /\ (compromised_at k A sid \/
6 compromised_at k B 0))

That is, we have no confidentiality if the attacker compromises the recipient’s static key
or the sender’s ephemeral key (before or after the message is sent), but the compromise
of the sender’s static key does not affect security.

C3 provides weak forward secrecy, which combines the guarantees of C1 and C2 to
link message confidentiality to both the peer’s ephemeral key and recipient’s static key:

1 let trace_property_C3 =
2 forall i j sid eph A B M.
3 (event_at i ConfSentEph A sid B eph M 3 /\
4 attacker_knows_at j M /\ i <= j) ==>
5 (exists k. k <= j /\ (compromised_at k A sid \/
6 (exists sk. eph = PK(sk) /\
7 attacker_knows_at k sk /\
8 compromised_at k B 0)))

That is, we have no confidentiality if the attacker first actively interferes with the session
to provide its own ephemeral public key and then also compromises the recipient’s
static key (before or after the protocol message is sent).

C0 provides no guarantees:

let trace_property_C0 = True

Deriving Security Goals for each Noise Protocol. The overall security goal for
our Noise specification is to prove that every global execution trace for every Noise
protocol satisfies the 7 trace properties corresponding to A1-A2 and C1-C5. Hence, for
each payload in a Noise protocol, we can look up the confidentiality and authentication
level (from Appendix A) and map it to the corresponding trace property to obtain the
precise security guarantee at sender and recipient.

Our way of encoding security goals as trace properties (sometimes called corre-
spondence assertions [274]) is similar to how these goals are usually stated in protocol
verification tools like ProVerif and Tamarin. Notably, these trace properties are defined
independently of a specific Noise protocol or its F? code and only refer to events triggered
during protocol execution. This allows our security goals to be independently audited
and compared with other formulations. Indeed, the corresponding ProVerif query for
authentication level A2 in prior work [262] (see Section 4.2.3) is almost identical (modulo
syntax) to our trace property. However, the ProVerif queries for forward secrecy (C2-C5)
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look different from our trace properties since they use phases (instead of timestamps)
to enforce an order between messages and compromise events.

4.5.3 Security Proof for Noise?: Overview

Having stated our (trusted) security goals by mapping levels to trace properties, the
next step is to prove that our security-oriented specification preserves a global trace
invariant that implies these trace properties. This symbolic security proof in DY? relies
on two kinds of (untrusted) annotations: secrecy labels and authentication predicates.
These must be provided by the programmer and are then verified by typechecking.

Secrecy Labels. Each bytestring (key, message, constant) used in the protocol must
be annotated with a secrecy label that indicates which sessions of which principals
are allowed to read them. For example, a static (long-term) Diffie-Hellman private
key belonging to a principal named "alice" is given a label CanRead [P "alice"],
indicating that it can be read by all sessions of "alice", whereas an ephemeral private
key that is only meant to be used in session sid is labeled CanRead [S "alice"sid].
A long-term pre-shared key between the principals "alice" and "bob" is given the
label CanRead [P "alice"] t CanRead [P "bob"], where the join (t) operator indicates
the union of the two labels. For succinctness, we can also write the above label as
CanRead [P "alice"; P "bob"]. Constants and public bytestrings are labeled with
Public, indicating that they can be read by any session, including by the attacker.

Secrecy labels are related by a reflexive, transitive relation can_flow i l1 l2 which
says that a label l2 is stronger (more restrictive) than label l1 at a timestamp i. For
example, the label Public can always flow to any other label, and CanRead [P p; P p']
can always flow to CanRead [P p]; but CanRead [S p sid] can only flow to Public at
timestamp i if the event Compromise p sid occurs before i in the global trace.

The DY? cryptographic API manipulates these labels and imposes a strict discipline
on their usage, ensuring that secret data never flows to a public location. In particular,
AEAD encryption returns a ciphertext labeled Public, but requires as a pre-condition
that the label of the payload must flow to the label of the key. Computing a Diffie-
Hellman shared secret between two private keys with labels l and l0 yields a key with
label l t l0, indicating that any session that can read one of the two private keys can
know the shared secret. Calling a key derivation function (KDF) with two keys with
labels l and l0 yields a key with label l u l0, where the meet (u) operator indicates an
intersection; only sessions that can read both inputs may read the result. Hence, KDF
strengthens the label of a key by mixing in additional key material.

As a consequence of the secret labeling discipline, DY? provides a generic secrecy
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lemma stating that a secret with label l can only be obtained by the adversary at
timestamp i if can_flow i l Public holds. This lemma can be instantiated to obtain
strong protocol-specific security guarantees. For example, a Diffie-Hellman shared
secret x with label CanRead[S "alice"sid] t CanRead[S "bob" sid'] is forward secret :
an attacker can only obtain it if it specifically compromises sid (at alice) or sid' (at
bob) before these sessions end and their state is deleted. Notably, compromising the
long-term keys of alice or bob, or any other sessions at these principals does not help
the adversary obtain x. Labels like these allow us to prove trace properties like strong
forward secrecy (C5).

Authentication Predicates. DY? also defines a set of authentication predicates that
can be instantiated for each protocol to enable the propagation of security invariants
through cryptographic calls and events. For example, AEAD encryption has a pre-
condition ae_pred that is intended to specify the conditions under which a message is
allowed to be encrypted; this predicate becomes a post-condition for AEAD decryption.
For Noise, we instantiate ae_pred to require that the sender must have triggered the
AuthSent and ConfSent events, and consequently obtain the corresponding authentication
guarantee at the recipient. Similarly, an event predicate event_pred states when an
event may be triggered; we instantiate it to encode our authentication goals, requiring
that the event AuthReceived can only be triggered if the corresponding authentication
property holds. By instantiating these predicates and verifying that our protocol code
still satisfies the resulting preconditions, we link protocol session state invariants with
cryptographic guarantees to prove the target trace invariants for our Noise specification.

Structure of the Proof. We structure the symbolic security proof for our Noise
specification in several steps:

• Security Levels to Trace Invariants: we write a generic function that maps
any step of any Noise pattern to its corresponding level, as described in Figure 4.2,
the full version of which is in Appendix A. We then extend the global trace
invariant with the corresponding authentication or confidentiality trace properties
for every Noise message sent and received at each level.

• Security Levels to Key Secrecy Labels: we map each payload security level
to a predicate over the secrecy label of the AEAD key used to encrypt the payload.
We show that, for each confidentiality and authentication level, the AEAD key
secrecy label, the properties of AEAD encryption, and the generic secrecy lemma
of DY? together imply the global trace invariant.

• Handshake State Invariant: to each state of the handshake, we associate
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a label and we prove that in all runs of the protocol code, the resulting state
matches its target label. We then prove that the label of the handshake state at a
given protocol stage is always stronger than the target key secrecy label for that
stage of the protocol.

• High-Level API security: our high-level API always preserves the handshake
state invariant. In combination with the above sequence of proof steps, this allows
us to prove that all reachable traces of our Noise protocol specification satisfy the
level-based authentication and confidentiality guarantees of Noise. In particular,
we prove that these security guarantees are correctly propagated all the way up to
the user-facing API where they are exposed as understandable security guarantees.

To achieve the proof above, we build a new security-oriented specification of Noise
that is provably equivalent to our original specification, but is annotated with labels and
logical invariants that enable us to prove our security goals. The full proof development
is in F?; we now describe each of the proof steps.

4.5.4 Security Proof: Handshake State Invariant

Labeling the Handshake State. In our security spec, we annotate every element of
the handshake state with a secrecy label. The cipher_state and symmetric_state types
are now parameterized by a timestamp i and a label l for the chaining key ck and AEAD
key k:

type cipher_state (i:nat) (l:label) = {
k: option (aead_key i l);
n: nat; }

type symmetric_state (cfg:config) (i:nat) (l:label) = {
h : hash cfg i Public;
ck : chaining_key cfg i l;
c_state : cipher_state i l; }

The full handshake state for a session sid at a protocol participant p is annotated with
a security index. For each participating principal in the protocol, the index includes the
name of the principal (p), its local session identifier (sid), the name of the peer (peer),
and the secrecy label associated with the ephemeral key of the peer (peer_eph_label).
Of these, the last two are optional, since they may only be available in later stages of
protocols.
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type index = {
p: principal;
sid: nat;
peer: option principal;
peer_eph_label: option label; }

Notably, the index does not contain the peer’s local session identifier, since this value
is unknown to p. All p knows is the remote ephemeral public key, and so we state our
security properties in terms of what p knows about the security of this key, which is
encapsulated in peer_eph_label.

Each handshake state is annotated with the current index idx and the current label
l encoding the secrecy of the current chaining key and cipher state. Hence, in each
run of a protocol at a principal p, we have an index and a label describing the current
security guarantees.

type handshake_state (cfg:config) (i:nat) (l:label) (idx:index)
= {
sym_state : symmetric_state nc i l;
static : option (keypair cfg i (CanRead [P idx.p]));
ephemeral : option (keypair cfg i (CanRead [S idx.p idx.sid]));
remote_static : option (public_key cfg i (CanRead [P idx.peer]));
remote_ephemeral : option (public_key cfg i idx.peer_eph_label);
preshared : option (preshared_key cfg i idx.p idx.peer); }

In the handshake state, the local static and ephemeral keypairs have secrecy labels
related to the current principal and session. Once we have validated the remote static key
(see the certification function below), it is labeled with CanRead [P idx.peer]. However,
the relationship between the remote ephemeral key label (idx.peer_eph_label) and the
peer’s identity is unknown. The pre-shared key, if it exists, has a label indicating that
it is shared between the principal and its peer.

Computing Target Secrecy Labels. Given a Noise protocol (described as a
handshake_pattern), and an index describing the current run, we can compute the
target secrecy label for the handshake state at the initiator and responder at each stage
of the protocol. Note that since the initiator and responder have different (partial) views
of their peer’s protocol state, the computed labels at the two ends may be different.
In total, we compute four labels at each stage, two for‘ the initiator, and two for the
responder:

• li: the current label at I;

• l i : the last label at which I received a message from R;
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Protocol Message Sequence Stage Initiator Handshake State Label Responder Handshake State Label
li l i lr l!r

X

 s pre
! e, es, s, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) u - (CanRead [P idxr.p]tidxr.peer_eph_label) u = lr[1]

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr.p; P idxr.peer])
! [d1, d2, ...] 2 = li[1] Public = lr[1] = lr[1]

NX

! e [d0] 1 Public - Public Public
 e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr.p idxr.sid] t idxr.peer_eph_label) u Public

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr.p]tidxr.peer_eph_label)
! [d2] 3 = li[2] = li[2] = lr[2] = lr[2]
$ [d3, ...] 4 = li[2] = li[2] = lr[2] = lr[2]

IKpsk2

 s pre
! e, es, s, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) u - (CanRead [P idxr.p] t idxr.peer_eph_label) u = lr[1]

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr.p; P idxr.peer])
 e, ee, se, psk [d1] 2 li[1] u = li[2] lr[1] u = lr[1]

(CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u (CanRead [S idxr.p idxr.sid]tidxr.peer_eph_label) u
(CanRead [P idxi.p]tidxi.peer_eph_label) u (CanRead [S idxr.p idxr.sid; P idxr.peer]) u

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr.p; P idxr.peer])
! [d2] 3 = li[2] = li[2] = lr[2] = lr[2]
$ [d3, d4, ...] 4 = li[2] = li[2] = lr[2] = lr[2]

Figure 4.3: Target Security Labels Computed for Three Example Noise protocols (X,
NX, and IKpsk2)

• lr: the current label at R;

• l!r : the last label at which R received a message from I.

When we wish to refer to the label at a particular stage n, we write li[n] or lr[n].
The sequence of computed labels for our three example Noise protocols X, NX, and
IKpsk2 are shown in Figure 4.3, the full version of which is in Appendix B.

The target label computation faithfully follows the sequence of cryptographic oper-
ations. Every time new key material is added to the handshake state, the new label
is a meet (or u) of the old label and the new key material. If the key material is a
Diffie-Hellman secret, its label is a join (or t) of the labels of the two Diffie-Hellman
private keys. Each participant knows the labels of its own static key (CanRead [P idx.p])
and its own ephemeral key (CanRead [S idx.p idx.sid]). After public key validation, it
also knows the label of the peer’s static key (CanRead [P idx.peer]), but it typically
does not know the label of the peer’s ephemeral key (idx.peer_eph_label). Hence,
Diffie-Hellman operations involving the peer’s ephemeral key result in labels that use
idx.peer_eph_label as an opaque label.

Computing Target Labels for X. The protocol X has a single message with four
tokens. At the initiator point of view, the token e does not affect the label; es changes
the label to the secrecy label of the ephemeral-static Diffie-Hellman shared secret
(CanRead [S idxi.p idxi.sid; P idxi.peer]); s does not affect the label; ss changes the label
to the meet of the previous label and the label of the static-static Diffie-Hellman shared
secret (CanRead [P idxi.p; P idxi.peer]). Hence the label li after the first message is a
meet of the labels of the two Diffie-Hellman shared secrets.

From the responder’s point of view, the label lr looks a bit different. Since the respon-
der does not know the label of the initiator’s ephemeral key, the label it computes for the
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ephemeral-static shared secret is of the form (CanRead [P idxr.p] t idxr.peer_eph_label),
where idxr.peer_eph_label is the label of the peer’s ephemeral private key. The label
for the static-static shared secret is the same. Hence, for the responder, the key after
the first message is only partially authenticated (level 1 in Noise terminology)

The last received label l i is null since the initiator has not received any message,
and l!r is the same as lr.

Computing Target Labels for NX. For NX, the label computation is similar, except
that the labels at the initiator and responder are even more asymmetric, since the
initiator is unauthenticated. Hence, at the end of the protocol, the initiator has a precise
label linking its session to the peer’s identity (CanRead [S idxi.p idxi.sid; P idxi.peer]), but
the responder only has a weak label linking its session to some (potentially compromised)
peer ephemeral key (CanRead [S idxr.p idxr.sid] t idxr.peer_eph_label).

Computing Target Labels for IKpsk2. The computation of labels for IKpsk2 follows
the same pattern as X and NX except that both parties are authenticated and their
labels get stronger with each stage. Notably, at the end of the second message, the
responder’s label lr[2] has reached the maximum label for this pattern (it never changes
thereafter). However, at this point, the last received label l!r [2] is still quite weak (since
R has not yet received a message protected under the newest key). It is only when the
responder receives a subsequent (data) message from the initiator that the two labels lr
an l!r coincide. It is this quirk of IKpsk2 that leads to the responder obtaining a slightly
weaker forward secrecy guarantee (Noise level 4) at the end of the second message, and
strong forward secrecy (level 5) after the third message.

Hence, for instance, after the second IKpsk2 message, the target handshake state
label at an initiator with index idxi is computed as follows:

(CanRead [S idxi.p idxi.sid; P idxi.peer]) u
(CanRead [P idxi.p; P idxi.peer]) u
(CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label]) u
(CanRead [P idxi.p] t idxi.peer_eph_label]) u
(CanRead [P idxi.p; P idxi.peer])

Each line of the label corresponds to some key material that has been mixed into the
chaining key: ephemeral-static, static-static, ephemeral-ephemeral, and static-ephemeral
Diffie-Hellman secrets, followed by a pre-shared key.

Proving the Handshake Secrecy Invariant. Our main secrecy invariant for the
handshake state is that at each stage of the protocol its label must match the computed
target label. We prove that the messaging functions in our Noise specification preserve
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this invariant whenever they modify the handshake state. For example, the type of our
labeled send_message_tokens function is as follows:

val send_message_tokens (cfg : config) (initiator is_psk : bool)
(tokens : list token) (i : nat) (l : label) (idx : index)
(st : handshake_state cfg i l idx) :
(result

(ciphertext : msg i Public *
handshake_state cfg i (update_label l idx tokens initiator) idx))

The result type says that the new handshake state label (after the message is sent) can
be computed from the old label, the index, the list of sent tokens, and the message
direction. Separately, we show that this updated label corresponds exactly to the target
label computed for this stage of the handshake pattern.

The type for receive_message_tokens is a bit more complicated since the index of
the handshake state may change in the course of the function, if the message contains
the peer’s static or ephemeral key. Other than this detail, we again prove that it updates
the handshake label in the same way from the prior label and received tokens. Hence,
we prove that all our messaging functions preserve the handshake labeling invariant.

Establishing the Peer Ephemeral Invariant. The label of peer ephemeral key
(idx.peer_eph_label) in the handshake state is (as yet) unrelated to the peer’s identity.
It means that the keys in the handshake state are linked to an untrusted remote
ephemeral key, and hence are not forward secret. To obtain stronger forward secrecy
guarantees, we need to establish an authentication invariant on the handshake state.

As described above, in addition to the target secrecy labels (li, lr) for each handshake
state at the initiator and responder, we also keep track of the label at which each
participant received its last message (l i , l!r ). We then prove that if this last receive
label is non-compromised at i (i.e., it does not flow to Public) then the remote ephemeral
key label at i (idx.peer_eph_label) must be of the form CanRead [S idx.peer sid'] for
some session sid' at the peer. In other words, the last received message conditionally
attests to the authenticity of the peer ephemeral key. If the payload received with this
message was protected with a strong label, we get a strong authentication guarantee
for the peer ephemeral.

To obtain an authentication guarantee for the peer ephemeral key, we rely on the
global AEAD predicate (ae_pred, mentioned in Section 4.5) to enforce that every
encrypted handshake payload sent in each direction contains a transcript hash in the
associated data, which uniquely captures all the ephemeral keys exchanged so far. Using
this AEAD predicate at each decryption, the receive_message functions can establish
and maintain the peer ephemeral invariant in the recipient’s handshake state.
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4.5.5 Security Proof: Handshake State Invariant to Trace Prop-
erties

Our next goal is to show that the handshake state invariant implies the trace properties
corresponding to our authentication (A0-A2) and confidentiality goals (C0-C5). This
proof is in three steps: (1) we map each authentication and confidentiality level to
predicates on the secrecy label of an AEAD key; (2) we show that the handshake state
invariant guarantees that the current AEAD key in the handshake state satisfies these
key secrecy predicates; (3) we show that each key secrecy predicate implies the trace
property for the corresponding level.

Mapping Levels to Key Secrecy Predicates. We define a series of security
predicates in F?, one for each payload security level, stated in terms of the current global
timestamp (i), security index (idx), and a handshake state label (l). The confidentiality
predicates should be read from the viewpoint of the sender, whereas the authenticity
predicates are from the viewpoint of the recipient. Each predicate has the same shape,
represented by the predicate type below:

type security_pred = i:nat -> idx:index -> key_label:label -> Type

The three authentication predicates are as follows:

Level Authentication Predicate (over i, idx, and l)
A0 >
A1 can_flow i (CanRead [P idx.p; P idx.peer]) l
A2 can_flow i (CanRead [S idx.p idx.sid; P idx.peer]) l

Each authentication predicate is stated in terms of the strength of the current
key label l; that is, the conditions under which the current key may be known to the
adversary. This in turn implies the conditions under which the messages received by
idx.p may have been forged or tampered with.

For level A0, there are no authentication guarantees, and so the predicate is always
>.

For level A1, we require that l is at least as strong as the (static-static) label
CanRead [P idx.p; P idx.peer], which means that the current key can only be known to
the adversary if one of the two static keys (at idx.p or idx.peer) were currently known
to the adversary.

For level A2, we strengthen the requirement by requiring that l is at least as strong as
the (ephemeral-static) label CanRead [S idx.p idx.sid; P idx.peer]. This predicate requires
that the AEAD key in the cipher state should be known only to the principal (idx.p)
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Level Confidentiality Predicate (over i, idx, and l)
C0 >
C1 can_flow i (CanRead [S idx.p idx.sid] t idx.peer_eph_label) l
C2 can_flow i (CanRead [S idx.p idx.sid; P idx.peer]) l
C3 can_flow i (CanRead [S idx.p idx.sid; P idx.peer]) l ^

can_flow i (CanRead [S idx.p idx.sid] t idx.peer_eph_label) l
C4 can_flow i (CanRead [S idx.p idx.sid; P idx.peer]) l ^

can_flow i (CanRead [S idx.p idx.sid] t idx.peer_eph_label) l ^
(compromised_before i (P idx.p) _ compromised_before i (P idx.peer) _

(9sid'. peer_eph_label == CanRead [S idx.peer sid']))
C5 can_flow i (CanRead [S idx.p idx.sid; P idx.peer]) l ^

can_flow i (CanRead [S idx.p idx.sid] t idx.peer_eph_label) l ^
(compromised_before i (S idx.p idx.sid) _ compromised_before i (P idx.peer) _

(9sid'. peer_eph_label == CanRead [S idx.peer sid']))

Figure 4.4: Confidentiality Predicates for each Noise Confidentiality Level

and its peer (idx.peer), and should be bound to the current session sid at idx.p. So, even
an adversary who compromises a principal’s static key cannot obtain the session key;
the adversary must compromise either the principal’s ephemeral key or the peer’s static
key. In particular, this forbids KCI attacks, since compromising the long-term keys of
the principal idx.p does not break authentication.

The six confidentiality predicates are depicted in Figure 4.4, again stated in terms
of the timestamp i, index idx, and the current handshake state label l.

As with authenticity, level C0 provides no guarantees.
For level C1, we require that the handshake state label l is at least as strong as

the ephemeral-ephemeral label (CanRead [S idx.p idx.sid] t idx.peer_eph_label) which
means that the recipient (peer) is unauthenticated and hence could be played by
an active attacker. This level only protects against passive adversaries. Note that
idx.peer_eph_label is actually an optional value, so our the predicate definition implicitly
says that this value must not be empty, otherwise the confidentiality predicate is false.

For level C2, we require that l is at least as strong as the ephemeral-static la-
bel CanRead [S idx.p idx.sid; P idx.peer], so we have confidentiality unless the sender’s
ephemeral key or the peer’s static key are compromised.

For level C3, our requirement is a little stronger in that we require the current label to
be stronger than both the ephemeral-static label (from 2) and the ephemeral-ephemeral
label (from 1). This level provides weak forward secrecy, since the attacker can actively
interfere with the session to insert its own ephemeral key.

For level C4, we strengthen the forward secrecy guarantee of level 3 by adding
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conditions under which the peer ephemeral key is known to be secure. Unless the
attacker has actively compromised one of the two static keys (before the session is
complete), the peer_eph_label must be of the form CanRead [S idx.peer sid'] for some
peer session sid'. Hence, we have forward secrecy if both static keys are non-compromised
during the session.

Level C5 provides strong forward secrecy: the attacker must compromise either the
sender’s ephemeral key or the recipient’s static key before the session is complete. This
predicate is as follows:

can_flow i (CanRead [S idx.p idx.sid; P idx.peer]) l ^
can_flow i (CanRead [S idx.p idx.sid] t idx.peer_eph_label) l ^
(compromised_before i (S idx.p idx.sid) _
compromised_before i (P idx.peer) _
(9 sid'. peer_eph_label == CanRead [S idx.peer sid']))

The first line of this predicate says that the handshake secrets should be readable
only by the (authenticated) peer (idx.peer) and the current session idx.sid at idx.p.
The second line says that the handshake secrets must also be bound to some peer
ephemeral key. The last two lines provide strong forward secrecy: they say that unless
the peer’s long-term keys and the specific session idx.sid of idx.p was compromised
(before the session is complete), the peer ephemeral key must have a label of the form
CanRead [S idx.peer sid']. Since the key label is bound to specific sessions at both ends,
compromising long-term keys after the session has no effect on key secrecy.

Handshake Invariant to Key Secrecy Predicates. Given the handshake state
invariant (including the secrecy invariant and the peer ephemeral invariant), we prove
that in each reachable handshake state the current handshake label satisfies the au-
thenticity and confidentiality predicates described above for the security levels at the
current stage of the protocol. In other words, we show that the secrecy label annotating
the handshake state (and hence the label of its current AEAD key) is always stronger
than the label expected by the Noise payload security level at the current stage of the
protocol.

Key Secrecy Predicates to Trace Invariants. Message authenticity and confi-
dentiality guarantees in secure channel protocols directly rely on the secrecy of the
corresponding encryption key. In DY?, the AEAD encryption function only allows
the encryption of a message under a key whose label is stronger than the message,
and so the key label expresses an upper bound on the secrecy of messages. For our
confidentiality proofs, we assume that the application always sends messages labeled
with the current handshake state label, which is the same as the current AEAD key
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label. Then, from using the confidentiality predicate on key labels for each level, we
derive the confidentiality trace invariant for messages sent at this level as a corollary of
the generic secrecy lemma of DY?.

For authentication, we instantiate the ae_pred pre-condition of AEAD encryption
to ensure that each call to the AEAD encryption function is preceded by a security
event AuthSent with the appropriate parameters. We also instantiate the event_pred
pre-condition for security events to ensure that the AuthReceived function can only be
called if the corresponding authentication trace property is satisfied. These predicates,
along with the properties of AEAD encryption and decryption, and the authentication
predicates on the key secrecy label allow us to prove the trace invariant for each
authentication level.

This completes the security proof for the protocol code. In summary, we combine
the handshake state invariant with key secrecy predicates to show that every reachable
handshake state preserves the global trace invariant, which includes the confidentiality
and authentication goals for each level.

4.5.6 Security Proof: High-Level API security

The final step of our proof involves propagating the protocol security guarantees
up through the stack all the way to the high-level API. For most of our code, this
propagation is relatively straightforward: we prove that our code does not accidentally
break the labeling discipline, by storing a secret value in a public location, or mixing
up data from different sessions.

The main security-critical step in this proof is the static key validation function
provided by the device API. We assume that the certification function can take a
potential public key, along with a (possibly-empty) certificate, and verify that it is
indeed a static public key belonging to a given principal:

val certification_function: i:nat -> rs:bytes -> rcert:bytes ->
option (peer:principal{is_public_key rs i (CanRead [P peer])})

We also propagate our secrecy labels through the device management API, by
annotating all remote static and pre-shared keys stored in the device with the appropriate
labels and ensuring that these labels are respected by the data structure and by the
encrypted storage mechanism.

After all these steps, we obtain a high-level API that guarantees that each application
message sent or received with the API meets high-level security properties expressed
using a subset of the Noise security levels.
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Component F? spec Low? code DY? proof
Core Protocol (Section 4.3) 1,095 15,506 1,792
Device Management (Section 4.4) 315 6,410 475
Session API (Section 4.4) 1,106 13,184 3,681

Figure 4.5: Size of the Noise? codebase, excluding whitespace and comments. The
total size of the codebase is 43kLOC.

Pattern Noise
? Custom Cacophony NoiseExpl. Noise-C

X 6677 N/A 2272 4955 5603
NX 5385 N/A 2392 4046 5065
XX 3917 N/A 1593 3149 3577
IK 3143 N/A 1357 2459 2822

IKpsk2 3138 3756 1194 2431 N/A

Figure 4.6: Performance Comparison, in handshakes / second. Benchmark performed on
a Dell XPS13 laptop (Intel Core i7-10510U) with Ubuntu 18.04.

4.6 Evaluation and Comparison with Related Work

Size of the Codebase. Figure 4.5 measures the size of the F? codebase for our Noise
protocol implementation. This covers everything described in this paper. The core
protocol code contains the Noise messaging functions. Device management includes
long-term key storage and validation, including the encrypted storage and verified
in-memory data structures, such as a linked list and an imperative map. Session API
includes the two successive state machines and the high-level user-facing API code. For
each component, we list the size of the high-level specification, the Low? code, and the
DY? proof. All of the code listed here was written for the purposes of this paper. The
total size is 43kLOC excluding whitespace and comments. As a point of comparison,
HACL? itself is 97kLOC, making Noise? the second largest F? project in the literature.

The Compiled C Library. Using the Noise? compiler, we compile several specialized C
implementations for each of the 59 Noise protocols. Representative code sizes are: 6,400
lines of C code for IKpsk2, 5,900 LoC for XX, and 4,900 LoC for X. Each Noise Protocol
admits several implementations, depending on the choice of primitives (e.g. SHA2-256
vs. Blake2b), and the degree of optimization (e.g. Blake2b-portable vs. Blake2-AVX2).
As a proof of concept, we ran a batch job that produced 472 implementations, out
of several thousand possible choices [271]; the result is a net 3.2M lines of C code
(including whitespace). In practice, a typical user would choose a Noise protocol, a set
of primitives and a choice of optimization level, then would download the corresponding
C implementation from Noise?, along with a custom distribution of HACL? containing
the relevant cryptographic primitives for the target platform, to obtain a small high-
performance protocol implementation. Advanced users can extend our code-base and
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compile it in different ways, to obtain a combination of Noise patterns, for example.

Proof Overhead. A popular way of measuring the human effort of verification is the
proof-to-code ratio: how many lines of Low? code did we write for each line of C that
we produced. If we were to consider all 59 Noise patterns, this ratio would drop to
0.2, without even taking into account all the ciphersuite specializations we support.
Conversely, if we only ever wanted generated code for a single Noise protocol, then the
ratio jumps to nearly 7. A more realistic estimate is a proof-to-code ratio of 1, based on
the 44kLOC of C code produced for the five patterns we actively test and benchmark.
This is on par with (or even better than) mature F? verification projects like HACL?.

Feature Comparison. We compare other Noise implementations in Figure 4.7.
Noise? generates specialized code, and is a compiler (C). WireGuard and Brontide are
specialized, built-in (B) implementations for the purposes of a single application. Other
implementations are interpreted (I). We count all patterns, even those that do not
appear in the Noise Protocol Framework.

An implementation offers a Lean API if it establishes a clear abstraction boundary
that strives to prevent user mistakes. Details vary; here, the presence of a state
machine with abstract send and receive functions is enough to qualify as a “Lean
API”. WireGuard and Brontide are omitted, since they use a single Noise protocol and
therefore leverage that fact to traverse abstraction boundaries. An implementation
successfully handles Early Data if it allows the user to use early message payloads, while
preventing confidentiality issues one way or another. WireGuard uses a custom scheme
that has been carefully audited; Brontide prevents sending payloads altogether before
the handshake is finished. An implementation with Key Validation provides a way of
validating keys upon receiving them, e.g. by calling a user-provided function. Finally,
an API with Key Storage provides a long-term, secure way of storing and retrieving
preshared or remote static keys.

Code sizes vary according to the feature set and the language used. For Noise?, we
list the average size of a single, specialized C implementation. Noise? is larger than e.g.
Cacophony or Noise Explorer, because of a more verbose language (C) and a larger
feature set. Noise? is smaller than Noise-C or Noise Java. Our choice of generating C
code will, we hope, facilitate integration in existing codebases. We remark that not
all implementations support the same cipher suites; this depends on the choice of the
underlying cryptographic library. We are here limited by e.g. the absence of Curve448
in HACL?; fortunately, none of the applications we studied require it (this includes
WhatsApp, not counted in this table).

Performance comparison. We compare the speed of our code with other Noise
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Snow I Rust 59 N N N N N ~3400
Noise Explorer I Rust/Go 50 Y N N N N ~900
Brontide B Go 1 - - N N N ~750
Noise Java I Java 40 N N N N N ~8000

Figure 4.7: Noise Implementations Comparison. For Type: C = compiler, I =
interpreter, B = builtin, i.e., a custom implementation.
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Figure 4.8: Noise Analysis Comparison. For Model: S = symbolic, C = computational.
Model Size and Verification Time are per pattern.

implementations in Figure 4.6. We compiled the C code for Noise-C and Noise? using
gcc 7.5.0. We used QEMU to run WireGuard for benchmarking, the Criterion 0.3.3
crate to benchmark the Rust code and the Criterion 1.5.9.0 package to benchmark
the Haskell code. We observe that our Noise? implementation either beats existing
implementations for handshakes per second; or is competitive with the state-of-the art
IKpsk2 implementation from WireGuard. Detailed analysis reveals that without a GC
(e.g. Noise-C), the performance is dominated by the DH computations.

Security Analysis Comparison. Figure 4.8 compares our symbolic security analysis
with prior formal proofs of Noise protocols. The closest related works are Noise Explorer
and Vacarme, which both analyze (almost all) Noise protocols against Dolev-Yao
attackers. Noise Explorer [262] compiles each handshake pattern to a ProVerif model
and verifies it against a series of reachability queries corresponding to the different Noise
secrecy and authenticity levels. The analysis of each protocol takes between 30 minutes
and 24 hours. Vacarme generates Tamarin models for each protocol, and analyzes it
against the strongest threat model supported by the protocol. Analyzing 53 protocols
takes a total of 74 CPU days.
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The key difference in our approach is that we verify a generic executable Noise
specification using a modular, semi-automated proof technique based on dependent types.
Hence, we are able to verify the whole protocol specification in about 9 minutes, which
amounts to 10s per pattern. Furthermore, our proofs are for an executable specification
of the whole Noise protocol stack, whereas Noise Explorer and Vacarme only focus
on the protocol messaging code. Conversely, the protocol-level verification results of
Vacarme are stronger than ours, since Tamarin can handle equivalence properties like
anonymity and has a more precise model of Diffie-Hellman.

The security proof overhead for Noise? can be estimated by the ratio between our
DY? proof and the functional specification, which is 2.4. Note however, that this is a
proof for all 59 patterns, and is still just a fraction of the effort of developing the Low?

implementation.
Figure 4.8 also notes other work on the computational analysis of Noise protocols:

[263] defines a new security model for cryptographically analyzing multiple Noise
protocols using pen-and-paper proofs; [275] describes a manual proof of WireGuard,
including an analysis of IKpsk2; [253] presents a mechanized cryptographic proof of
WireGuard using CryptoVerif. These works use a more precise cryptographic model
than the symbolic models in our work or in Vacarme. However, the work needed to
prove each protocol is significantly higher. Linking our verified implementations to
computational proofs is an interesting direction for future work.

Other Related Work. Apart from work on Noise, prior works have investigated the
automatic generation of protocol code from verified high-level protocol specifications,
yielding implementations in Java [276], OCaml [277, 278], and F# [279, 280]. Each of
these tools has been applied to a handful of protocols; the generated protocol code is
tuned for correctness rather than performance and relies on unverified cryptographic
libraries. In contrast, by relying on the F? ecosystem, we generate high-performance C
code that is provably correct, memory safe, and linked to a verified cryptographic library.
Furthermore, the flexibility and succinctness of the Noise specification language enables
us to automatically generate verified implementations for 59 distinct protocols, yielding
a comprehensive protocol library. Other prior works have focused on efficient code
generation for specialized cryptographic constructions like multi-party computation
and zero-knowledge proofs; we refer the reader to [255, 281] for a survey of this line
of work. Finally, a long line of work has investigated techniques for directly verifying
cryptographic protocol implementations written in F# [252, 282–284], F? [234, 285],
Java [259, 286], and C [287–289]. In these settings, each protocol implementation must
be verified independently, whereas our compiler-based approach allows us to verify a
large class of protocol implementations once and for all.
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4.7 Conclusion

We have presented a Noise Protocol Compiler embedded within F?. Our compiler
is verified once; then, for any choice of Noise Protocol and matching cryptographic
implementations, it produces an efficient, low-level implementation in C. We generate
not only protocol transitions, but also the entire protocol stack, including state machine,
device and session management, user-configurable key policies, long-term key storage,
and dynamic security levels. At all layers, we guard against user error by providing
robust APIs. We go beyond the usual trifecta of memory safety, functional correctness
and side-channel resistance, by connecting our verified verified stack to a symbolic
security proofs based on the DY? framework. None of these results affect performance,
as our C code beats most existing implementations.





Chapter 5

Modularity and Zero-Cost
Abstractions for Program Verification

With the Noise? project, we explored the problem of moving up the software stack by
going beyond cryptographic primitives and developing secure protocol implementations.
When moving up to higher-level software however quickly comes the problem of imple-
menting generic code. Even more challenging in our case is the fact that we need this
code to be low-level, efficient, and verified. We now turn to this problem with a project
which introduces zero-cost functors for program verification in F?.

5.1 Introduction

Within the span of a few years, formal verification has gone mainstream. Previously
confined to academic circles, the idea of proving properties about security-critical code
is now widely accepted. Case in point: a major cloud company like Amazon will pay for
a full sponsored article in the Wall Street Journal [290], touting the benefits of formal
verification for its cloud computing unit.

Such security-critical code often lies on the critical path of larger subsystems; users
therefore expect security-critical code to be not only secure and reliable, but also fast.
To that effect, programmers continue to resort to low-level programming idioms and
manual memory management, which allows them to exert fine-grained control on the
structure of their code, and hence squeeze every last inch of performance out of it [291],
sometimes directly leveraging hardware facilities to do so [292, 293]. This unfortunately
comes at a cost; taming the complexity of such programs is error-prone, leading to
abundant mistakes with dire consequences [294–308].

Aiming to address this problem, formal verification practitioners have thus focused

83
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on code that is both security-critical and low-level. Success stories include verified
cryptography, with e.g., HACL?/EverCrypt [127, 128, 233] (integrated into the Linux
kernel, Mozilla Firefox, and the Tezos blockchain), or Fiat Cryptography [192] (in-
tegrated into Google’s BoringSSL cryptographic library); verified parsers, with e.g.,
EverParse [256, 309] (integrated into Microsoft’s Hyper-V network virtualization stack);
verified kernels, such as CertiKOS [310, 311] or seL4 [312]; and many more.

But for all the success stories, it remains a technical challenge to author and verify
a system that is simultaneously large-scale, low-level, and performant. Large-scale
verification projects abound; one must only think of e.g., Mathlib [313], a large collection
of mathematical proofs and theorems written in Lean3, which recently crossed the
million-line threshold. Large-scale and low-level verified projects are not unheard of:
seL4 [314], based on a dialect of Haskell, or CertiKOS [311], written in Coq, both
demonstrate that one can write non-trivial pieces of software (such as OSes) that deal
with low-level concerns and deliver reasonable performance. But when it comes to large-
scale, low-level and competitively performant verification projects, few candidates come
to mind. One reason is that verification remains onerous: expert proof engineers are
rare, and their task is hard enough; as such, advances in proof engineering and reusable
abstractions are badly needed to increase productivity. Nowhere is this more salient
than when trying to verify low-level code. Verification calls for high-level abstractions
and extreme modularity, while low-level efficient code calls for breaking up those very
abstractions barriers. This, in our opinion, has hindered the development of large-scale,
low-level, and efficient libraries.

High-level abstractions are well-known to functional programmers; they may include
type-level abstraction and polymorphism; module interfaces and functors; type classes.
They are also known to the mythical “real-world” programmers: templates and concepts
in C++, or traits in Rust, also support modularity in the large. But sooner or later, the
programmer will, on the quest to ultimate performance, pull low-level tools from their
arsenal. The infamous C preprocessor oftentimes makes an appearance, with tricks so
frightening that basic decency prevents us from describing them here [315]. And these
are not just simple, straightforward patterns such as loop unrolling; entire polymorphic
data structures are emulated using the C preprocessor. This route usually ends in pain
and suffering, with unmaintainable code, subtle mistakes, and generally, the inability to
reason about such code. There is thus a tension between going low-level for efficiency,
and introducing high-level concepts, abstraction and modular boundaries to make the
code easier to reason about. This tension is heightened in the context of verification:
the need for modular, high-level code is even greater, so as to ease verification; but the
pressure for efficient, low-level code is also stronger, to meet practitioners’ performance
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requirements and thus give our verified code the chance to be integrated and then
deployed in mainstream software.

In this chapter, we set out to have our cake and eat it. That is, to have efficient,
low-level, verified code, and to do so at a large scale, in a verified software project
that exceeds 100,000 lines of verified code. Worded differently, we want to reconcile
the modularity of, say, SML or OCaml’s functors, or Haskell’s type classes, with the
efficiency of Rust traits and the infamous “zero-cost abstraction” of C++ templates,
for verified code. And we want to have our cherry on top of the cake: we set out to
do so without extending the Trusted Computing Base (TCB) of the tools we use. We
design, implement and evaluate our techniques within the F? dependently-typed proof
assistant, which culminate in the following contributions.

First (Section 5.3), we propose a proof engineering methodology that allows one
to structure their verified code as they would, say, with functors, all the while still
producing idiomatic, low-level code with readable functions and no runtime overhead of
any kind.

Second (Section 5.4), we observe that using this methodology is burdensome in
practice, because structuring the code to fit our proof engineering pattern requires a
fair amount of bookkeeping. We thus automate our methodology by designing a DSL
that guides an automated code-rewriting transformation which automatically applies
the pattern from Section 5.3 to the user’s code. In practice, this allows the user to
write their code in a modular, high-level, natural style that emulates ML’s functors,
while relying on inlining and partial evaluation to eliminate the high-level abstractions
and make our discipline truly, a zero-cost abstraction. The DSL is interpreted via
meta-programming, specifically, via elaborator reflection; in essence, we script the
compiler, and add an early compilation stage that takes our functor DSL and evaluates
it away. The techniques we introduce are implemented in user-space, meaning we do
not modify the compiler and leave the TCB intact, so as to provide the same guarantees
as code written without our libraries.

Third (Section 5.5), we explain how several algorithms previously released via the
HACL? and EverCrypt projects were, in reality, relying on our techniques to scale up,
and to avert engineering and usability disasters. We review a series of case studies and
show how several cryptographic primitives can be implemented using our DSL so as to
maximize code sharing and minimize maintenance.

Fourth (Section 5.6), and final, we examine a large case study: the streaming API,
a cryptographic construct that transforms an unsafe, block-based algorithm into a
safe, high-level API by means of an internal buffer. With our DSL, we write a generic
streaming API once, then instantiate it “for free” over any unsafe block-based algorithm.
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Out of a dozen instantiations of our streaming functor, six have been integrated into
the reference implementation of the Python programming language. This case study is
a contribution on its own: to the best of our knowledge, no one had precisely described,
captured with dependent types and implemented generically what it means to turn a
block-based algorithm into a streaming API.

Our evaluation section quantifies the improvements in programmer productivity
and effectiveness stemming from the use of our methodology. We have evaluated our
techniques on the HACL? project, and found that they were the key ingredient that
allowed HACL? to cross the barrier of 100,000 lines of verified source F? code. Without
our work, modularizing and scaling up the codebase would have been impossible.

We conclude and observe that while our case studies focus on cryptographic code,
our techniques are general and can be applied to data structures, or more generally,
any situation that calls for modular proofs of low-level programs, as evidenced by our
choice of running example (Section 5.3).

Contributions. The work in this chapter is adapted from a paper published at ICFP
in 2023 [316]. Jonathan came up with the idea of using the “functor” encoding and of
automating it by using meta-programming, and applied this methodology to several
cryptographic primitives. I extended the methodology to apply it to a larger collection
of primitives, in particular on the implementations required by the Noise? project; this
required a deep rework of the original version of the streaming hash APIs. Aymeric
later added more primitives. I also used some of the techniques mentioned in this
chapter directly in the Noise? project to make the implementation generic in, say,
the cryptographic primitive implementations or the peer identifiers. More precisely, I
used the idea of writing generic mk_ functions that are later specialized, as we do in
Section 5.3.2, but where the mk_ functions are parameterized in a style closer to the
“functor” parameters of Section 5.3.1 (i.e., without an index), because it didn’t leverage
the automation that we introduce in the Section 5.4. I decided not to mention those
techniques in the previous chapter as a detailed description fits more naturally here.

5.2 Background

In this section, we introduce the background required to understand our methodology.
We start with an overview of our verification environment: F? (Section 5.2.1). We then
present a well-known technique to encode functors with dependent types (Section 5.2.2)
that we build upon in the later sections.
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5.2.1 F?, Low?, Meta-F?

F? is a state-of-the-art verification-oriented programming language. Hailing from the
tradition of ML [317], F? features dependent types, refinement types, and a user-
extensible effect system [318], which allows reasoning about IO, concurrency, divergence,
various flavors of mutability, or any combination thereof. For verification, F? uses a
weakest precondition calculus based on Dijkstra Monads [319, 320], which synthesizes
verification conditions that are then discharged to the Z3 SMT solver [321]. Proofs
in F? typically are a mixture of manual reasoning (calls to lemmas), semi-automated
reasoning (via tactics [218]) and fully automated reasoning (via SMT).

Low? is a subset of F? that exposes a carefully curated subset of the C language.
Using F?’s effect system, Low? models the C stack and heap, and allocations in those
regions of the memory. Low? also models data-oriented features of C, such as arrays,
pointer arithmetic, machine integers with modulo semantics, const pointers, and many
others via a set of distinguished libraries. Programming in Low? guarantees spatial
safety (no out-of-bounds accesses), temporal safety (no double frees, no use-after free)
and a form of side-channel resistance [127, 322]. All of these guarantees are enforced
statically and incur no run-time checks. To provide a flavor of programming in Low?,
we present the swap function below. We first focus on the various typical Low? features
of this function signature.

let swap (x y : pointer U32.t) : ST unit (requires ...) (ensures ...) =
let xv = deref x in
let yv = deref y in
upd x yv;
upd y xv

Functions in Low? are annotated with their return effect, in this case ST, which
indicates that the function may perform heap allocations1. Functions without a return
effect are understood to be total. The input parameters have type pointer U32.t, i.e.,
pointers to 32-bit unsigned machine integers with modulo semantics. Functions are
specified using pre and post-conditions, which we omit here and whose explanation we
defer until Section 5.6. Finally, the implementation of swap simply dereferences x and y
(deref), then updates them while swapping their values (upd).

Erasure and extraction in F? follows Letouzey’s extraction principles for Coq [323].
After type-checking and performing partial evaluation, F? erases computationally-

1Low? actually distinguishes two stateful effects, Stack for functions which only allocate on the
stack (no memory leaks), and ST for functions which also allocate on the heap. In this chapter, we
only use ST for the purpose of simplicity.
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irrelevant code and performs extraction to an intermediary representation dubbed the
“ML AST”.

For erasure, F? eliminates type refinements, pre- and post-conditions, and generally
replaces computationally irrelevant terms with units. F? also removes calls to (pure)
unit-returning functions, which means that calls to lemmas are also eliminated. For
extraction, F? ensures that the “ML AST” features only prenex polymorphism (i.e.,
type schemes), and that it is annotated with classic ML types. In the context of this
chapter, we are only concerned with the generation of C code, which is possible only on
a subset of the “ML AST”; when extracting for C, a battery of checkers verifies that the
code is in the proper subset.

KaRaMeL [322] compiles the “ML AST” to readable, auditable C by using a series
of small, composable passes. The KaRaMeL preservation theorem [322] states that the
safety guarantees in Low? carry over to the generated C code. We show below the result
of compiling swap to C.

void swap(uint32_t *x, uint32_t *y) {
uint32_t xv = *x;
uint32_t yv = *y;
*x = yv;
*y = xv;

}

5.2.2 Encoding Functors With Dependent Types

We now illustrate the challenge of combining generic, modular programming (good for
proofs) with low-level compilation (good for efficiency). We start with a running example
that we will reuse in Section 5.3: an imperative key-value map implemented using an
associative list. For simplicity of exposition, we use standard algebraic datatypes, such
as list. Low? features low-level data structures, notably linked lists; however, these
would significantly complicate our running example with notions of memory footprints
and memory reasoning. We thus stick with list for the chapter, and provide a complete
low-level example relying on linked lists in the supplementary material.

To enable code reuse, we wish to make the associative list generic in the type of its
keys and values. If we were to use a language like OCaml or Haskell we would naturally
implement this map by using a functor or type classes. Listing 1 illustrates this with an
OCaml functor named MkMap, which takes an argument EqType containing a type for
keys k, and a corresponding decidable equality. The MkMap functor implements find
using a loop and mutable references, generically, for any type of keys k and corresponding
equality eq.
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1 module type Map = sig
2 type k
3 val find: k -> (k * 'a) list -> 'a option
4 end
5

6 module type EqType = sig
7 type t
8 val eq: t -> t -> bool end
9

10 module MkMap (E : EqType) :
11 Map with type key = E.t = struct
12 type k = E.t
13 let find x ls =
14 let b = ref true in
15 let lsp = ref ls in
16 while !b do
17 match !lsp with
18 | [] -> b := false
19 | (x', _) :: tl ->
20 if E.eq x x' then b := false
21 else lsp := tl done;
22 match !lsp with
23 | [] -> None
24 | (_, y) :: _ -> Some y
25 end

Listing 1: An Associative Map Implemented in OCaml

We want to attain the same modularity when verifying code in a prover like F?. As
a first attempt, we can reuse a well-known technique [324, 325] to encode this OCaml
functor using dependent types (Listing 2). The Map module signature becomes a record
map, and the type k of keys becomes a record field. Since this is a dependent record, eq
may refer to k. We implement the MkMap functor with the mk_map function, which
receives an instance of eq_type along with a type a. The return type of mk_map uses
a refinement: a value m:map has type m:map a{m.k == e.t} if it satisfies the logical
predicate m.k == e.t; this equation exactly encodes the condition type key = E.t of the
OCaml code (line 11). Finally, Low? uses a special while combinator for loops, which
takes two closures as inputs, for the loop condition and the loop body respectively; the
implementation of find otherwise mimics its OCaml counterpart. As the code is stateful,
i.e., it lives in the ST effect, it requires annotations such as pre- and post-conditions;
at this stage, we are concerned with the shape of the code and not its correctness: we
thus omit them for simplicity.

Even when assuming that all data structures are suitably low-level, the issue remains
that the implementation of find manipulates dictionaries (e.g., instances of eq_type).
Note that this is not specific to our encoding: we would have the same problems had
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1 type map (a : Type) = {
2 k: Type;
3 find: k -> list (k * a) -> ST (option a) ... }
4

5 type eq_type = { t: Type; eq: t -> t -> bool; }
6

7 let mk_map (e : eq_type) (a : Type) :
8 m:map a{m.k == e.t} = {
9 k = e.t;

10 find = (fun x ls ->
11 let b = alloc true in
12 let lsp = alloc ls in
13 while (fun () -> !* b)
14 (fun () ->
15 let ls = !* lsp in
16 match ls with
17 | [] -> upd b false
18 | (x', _) :: tl ->
19 if e.eq x x' then upd b false
20 else upd lsp tl);
21 match !* lsp with
22 | [] -> None | (_, y) :: _ -> Some y) }

Listing 2: An Associative Map Implemented in F?

we used functors or type classes, and this is the case for the OCaml implementation of
the map. Dictionary-passing is problematic because it has a cost at runtime. Worse,
our implementation doesn’t fit in the Low? subset and thus can’t be extracted to C;
indeed, the resulting code would manipulate records with fields containing types, which
is not supported in C. We show in the next section how we solved this problem.

5.3 Writing Low-Level, Modular Code

We showed in Section 5.2.2 how one can achieve the same level of modularity and
genericity in F? as in a regular, high-level programming language like OCaml, by
encoding functors with dependent types by means of an already known technique. But
now we ask: how can one turn this into idiomatic, efficient low-level code? In the
coming section, we answer by introducing new methods which build upon the technique
explained in Section 5.2.2. We stick to the same running example, that is an imperative
key-value map, and for the purpose of illustration, we assume once again that all data
structures, such as list, are suitably low-level.
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1 (* Map instantiation *)

2 let str_eqty : eq_type = { t = string; eq = String.eq; }
3 let ifind = (mk_map str_eqty int).find
4

5 (* After partial evaluation *)

6 let ifind (x: string) (ls: list (string * int)): option int =
7 let b = alloc true in let lsp = alloc ls in
8 while (fun () -> !* b)
9 (fun () ->

10 let ls = !* lsp in
11 match ls with
12 | [] -> upd b false
13 | (x', _) :: tl ->
14 if String.eq x x' then upd b false
15 else upd lsp tl);
16 match !* lsp with
17 | [] -> None
18 | (_, y) :: _ -> Some y

Listing 3: find after Instantiation (Top), then Partial Evaluation (Bottom)

5.3.1 Making Functors Zero-Cost: A First Attempt

We now present a first naive technique that allows the user to generate specialized Low?

code (i.e., without dictionary-passing), at the expense of code size explosion. The key
idea is to perform partial evaluation at extraction time to inline all uses of eq_type
(and a). To do so, we can leverage the F? normalizer to symbolically reduce terms. The
normalizer is not an F? specificity; it is at the core of dependent type systems, and
therefore a component of the type-checker of any dependently typed language. As such,
this component is part of the TCB of type-theory-based proof assistants.

The user proceeds as follows. First, they pick concrete values for the functor ar-
guments. In our example (Listing 3), the user picks str_eqty and int for the mk_map
parameters e:eq_type and a:Type, respectively. Then, the user applies those arguments
to the functor itself, hence defining an instantiated version of find, dubbed ifind (line 3).
The normalizer then kicks in and �-reduces the application of ifind to its concrete argu-
ments. By inlining the body of find, then by simplifying some terms like the projection
str_eqty.eq, all uses of records inside ifind are removed; the resulting specialized ifind
is indistinguishable from a direct, monomorphic implementation of find. We show the
result of partial evaluation in Listing 3.

This approach therefore allows us to turn our functors into zero-cost abstractions.
The caveat with this style, however, is that every single function needs to be inlined,
except for the top-level functions that make up the API entry points. This is fine
for our small example; but in a real-world development, this leads to both code size
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type dv = {
pid : Type;
send : pid -> list (pid * ckey) -> bytes -> option bytes;
recv : pid -> list (pid * ckey) -> bytes -> option bytes; }

type cipher = {
enc : ckey -> bytes -> bytes;
dec : ckey -> bytes -> option bytes; }

let mk_dv (m : map ckey) (c : cipher) : d:dv{d.pid == m.k} = {
pid = m.k;
send =

(fun id dv plain ->
Option.map (m.find id dv) (fun sk -> c.enc sk plain));

recv =
(fun id dv secret ->
Option.map (m.find id dv) (fun sk -> c.dec sk secret)) }

Listing 4: Implementation in F? of a Peer Device for a Secure Channel Protocol

explosion (we insert a copy of find’s body at each call-site), and unacceptable code
quality (implementing an algorithm as a single 20,000-line C function is generally
frowned upon). To illustrate this more concretely, we introduce in Listing 4 a client of
find, known as a “device”, a high-level data structure used in communication protocols
to store a map from peer identifiers to session keys, i.e., a map from unique participant
identifiers to the cryptographic keys used for secure communications.

A device should implement two functions to communicate with participants. The
send function takes as arguments a peer identifier id, a map from peer identifiers to
cryptographic keys (of type ckey), and a message plain. It looks up the key associated
to id, and finally uses it to encrypt plain. The recv function performs the dual operation,
i.e., it searches for the key to decrypt a message received from a known peer. The choice
of the peer identifier type pid is orthogonal to the implementation of a device dv; we can
therefore write a generic implementation parametric in pid and accordingly in the map
from peer identifiers to cryptographic keys. Furthermore, this device can be useful in a
variety of contexts and with a range of ciphersuites, and should thus be independent
of the specifics of any cryptographic encryption algorithm: we also parameterize the
implementation mk_dv with the encryption and decryption functions, encapsulated in
a record of type cipher.

Equipped with a generic device, we can, as in the map example, instantiate it for a
specific choice of peer identifiers and cryptographic functions, before applying partial
evaluation to get specialized code which does not manipulate dictionaries. Unfortunately,
doing so would lead us into the pitfall we mentioned earlier, where the code for find is
duplicated in both the instantiations for send and recv. In our experience interacting
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with maintainers of some of the most popular open-source projects, such aesthetic
faux-pas are bad enough that a practitioner will dismiss our code as ‘not serious’ and
‘too verbose’, raising barriers to its integration to existing codebases. In this regard, we
insist on the fact that the HACL? code, part of which we applied our methodology on
(Section 5.5), was deployed in real-world projects such as the NSS library or Python.

5.3.2 A General Rewriting Pattern for Fine-Tuned Code Gen-
eration

When specializing functions like send and recv, we want them to call the same specialized
version of find, rather than duplicate the body of find. In effect, we want to perform
whole-program specialization (in the style of MLton [326]) while preserving the shape of
the static call-graph (in order to give the programmer enough control so as to generate
palatable code). To do so, we propose a modular approach that allows us to rewrite each
function in isolation without knowing yet how the function will later be instantiated,
all the while avoiding the need for inlining everything. We proceed as follows. Instead
of using a dependent record, for each function, we add additional parameters that stand
in for the callees that need to be specialized; and we re-implement the function body
to refer to those arguments. For instance, send and recv become the mk_send and
mk_recv functions in Listing 5. Note that a function is parameterized with exactly its
callees: for instance send is parameterized by enc but not dec, while it is the converse
for recv. We intentionally refrain from using a record (“functor”)-based encoding like in
the previous sections: this would rapidly lead to a proliferation of type definitions, as
there would typically be one record per definition. This would make both programming
and maintaining our codebase tedious, as the addition or modification of any element
in the record would require changing all occurrences across the call-graph.

Anticipating a bit on the automation we introduce in Section 5.4, we request that
the polymorphism be prenex, i.e., that all type parameters be captured by the first
argument; this does not restrict expressivity, and allows us to avoid having extra type-
level dependencies across function arguments which would be difficult to automatically
handle. More specifically, we keep the generic types in a record, that we call the “index”
and make the first parameter of the function. This index must capture all the choices of
parametricity for the types. In practice, as we’ll see in concrete, real-world examples in
Section 5.5, we often pick the index to be an enumeration, but this is not a requirement
of our approach. The index can also range over an infinite number of elements, as is
the case for the generic type pid in Listing 5. In this specific example, since we are only
parametric in one type, we dispense with a record type and parameterize our functions
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let mk_send (pid : Type)
(find : pid -> list (pid * ckey) -> option ckey)
(enc : ckey -> bytes -> bytes)
(id : pid) (dv : list (pid * ckey)) (plain : bytes) : option bytes =
match find id dv with
| None -> None
| Some sk -> Some (enc sk plain)

let mk_recv (pid : Type)
(find : pid -> list (pid * ckey) -> option ckey)
(dec : ckey -> bytes -> option bytes)
(id : pid) (dv : list (pid * ckey)) (plain : bytes) : option bytes =
match find id dv with
| None -> None
| Some sk -> dec sk plain

Listing 5: Parameterizing send and recv by their Callees

over pid directly.
We also apply this approach to the find function previously presented. This function

is parametric in two types: the type of keys k, and the type of values v of the map.
We collect both types in a record of type mindex, which becomes the first argument of
mk_find, presented in Listing 6.

Importantly, we drop the “functor” encoding for the functions but not the types;
i.e., we use a record which holds all the type parameters. Keeping this encoding for
types doesn’t lead to the same proliferation of records as for functions. Indeed, type
parameters tend to be fewer, change less often, and their parameterization tends to be
more uniform accross functions.

We finally show an instantiation of those generic definitions in Listing 7, where
aes_enc and aes_dec are encryption/decryption functions for AES-GCM, one of the most
widely used authenticated encryption algorithm. We omit their implementation, which
is irrelevant for presentation purposes; they can be provided by a separate cryptographic
library. With this new encoding, we can individually unfold the definitions of mk_find,
mk_send and mk_recv before simplifying the projections over record fields, e.g., i.k,
while preserving the call graph; we show the result of the partial evaluation in Listing 7.
Note in particular that the definition of mk_find is not inlined in the resulting isend
and irecv; both functions instead call the specialized ifind.

Our goals are met: we have described a general rewriting pattern that allows us to
write generic implementations, that can be specialized for a choice of types (the “index”),
while preserving the shape of the static call-graph and hence produce high-quality
low-level code.
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type mindex = { k : Type; v : Type }

let mk_find (i: mindex) (eq: i.k -> i.k -> bool) (x: i.k)
(ls: list (i.k * i.v)) : option i.v =

let b = alloc true in
let lsp = alloc ls in
while (fun () -> !* b)

(fun () -> let ls = !* lsp in
match ls with
| [] -> upd b false
| (x', _) :: tl ->

if eq x x' then upd b false
else upd lsp tl);

match !* lsp with
| [] -> None
| (_, y) :: _ -> Some y

Listing 6: Rewriting find to Follow a Systematic Pattern

(* Instantiation *)

let i = { k = string; v = ckey; }
let ifind = mk_find i String.eq
let isend = mk_send string ifind aes_enc
let irecv = mk_recv string ifind aes_dec

(* After partial evaluation *)

let ifind x ls =
let b = alloc true in
let lsp = alloc ls in
while (fun () -> !* b)

(fun () ->
let ls = !* lsp in
match ls with
| [] -> upd b false
| (x', _) :: tl ->

if String.eq x x' then upd b false
else upd lsp tl);

match !* lsp with
| [] -> None
| (_, y) :: _ -> Some y

let isend id dv plain =
Option.map (ifind id dv) (fun sk -> Some (aes_enc sk plain))

let irecv id dv secret =
Option.map (ifind id dv secret) (fun sk -> aes_dec sk secret)

Listing 7: Instantiation (Top) and Partial Evaluation (Bottom) of the Map and Device
Functions
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Discussion Previous work in F? used a precursor to the techniques we present in this
section. In particular, HACL? [127, 233] made heavy use of specialization and partial
evaluation to factor out large pieces of code, for instance by writing a single generic
implementation of Poly1305 for three variants (C, C+AVX, C+AVX2). However, this
early style had two issues. First, it led to code size explosion due to excessive inlining,
which was solved by manually introducing alternating levels of generic and specialized
functions, a tedious and time-consuming task. Second, it relied on closed enumerations
(i.e., an inductive with constant constructors) as opposed to the open-ended “indices”
that we introduce in the present section. The first point is addressed by our DSL, the
rewriting tactic and the systematic higher-order pattern it produces. Regarding the
second point, parameterizing over closed enumerations is a legacy style (Section 5.5)
that is acceptable as long as the user is adamant that no further cases will be added.
Indeed, adding a new case to the enumeration entails a re-verification of the generic
code, affecting modularity. We strongly encourage users to try to define a generic
index type (i.e., at type Type), which provides more flexibility, modularity, and allows
the user to trivially add new specializations without affecting the generic code. This
requires, however, more thought on the part of the user to correctly define the index
type. Overall, this chapter groups in one place the culmination of all the techniques
which were introduced to make the Everest project [327] scale up to its current size.

5.4 Meta-Programmed Static Call-Graph Rewriting

In the previous section, we identified a programming pattern that allowed us to modularly
write verified code, in a way reminiscent of ML functors, by rewriting our low-level
functions into a higher-order form that lends itself to code specialization via partial
application. In practice, manually writing code which uses this pattern requires a fair
amount of tedious, administrative work. In this section, we thus set out to relieve
the user from this burden by designing a small DSL, to be more precise a subset of
Low? extended with a mechanism of annotations, by which the user can write code
in a natural style before calling a rewriting procedure which automatically turns this
code into a higher-order form. To do so, we i) propose a small usability tweak to make
parameterization easier, then ii) formally define our rewriting rules, and iii) devise
a frontend language that allows the user to express their intent via a mechanism of
annotations. Our rewriting rules are interpreted by a custom pre-processing phase
implemented via elaborator reflection, i.e., “scripting the compiler”. In effect, we are
adding a user-defined early compilation stage.
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type mindex = { k : Type; v : Type }
assume val eq (i : mindex) : i.k -> i.k -> bool

let find (i : mindex) (x : i.k) (ls : list (i.k * i.v)) : option i.v =
let b = alloc true in
let lsp = alloc ls in
while (fun () -> !* b)

(fun () ->
let ls = !* lsp in
match ls with
| [] -> upd b false
| (x', _) :: tl ->

if eq i x x' then upd b false
else upd lsp tl);

match !* lsp with
| [] -> None
| (_, y) :: _ -> Some y

Listing 8: Hoisting Callee Arguments from find

5.4.1 A Declarative Style for Callee Arguments

The higher-order, rewritten functions presented in Section 5.3.2 allow us to write
low-level, verified code in a modular fashion. However, there remains a usability
problem. The functions that we parameterize over, like eq, need to be brought in
scope frequently, as eq has many callers. This is currently achieved by making every
function in our development that needs it parametric over eq, which incurs a non-trivial
amount of boilerplate. Even worse, in the case of an actual algorithm, e.g., Curve25519
(Section 5.5.2), we parameterize the algorithm over a dozen operations. Asking the user
to add as many arguments to every declaration and call-site would be too onerous.

To alleviate these concerns, we propose to adopt a more declarative style. For
presentation purposes, let us reuse the map example from the previous section. Instead
of explicitly parameterizing the definitions (e.g., find) with their generic parameters
(e.g., the decidable equality eq), we introduce the parameters of our implementations as
top-level declarations annotated with the assume qualifier, as shown in Listing 8. We
achieve the same effect as before: the declaration is in scope for our entire development.
But this time, we avoid the syntactic overhead. Once this declaration is in the scope of
find, it can be freely used and referred to in the body of the function. In practice, the
index is an implicit argument, which further reduces the syntactic burden.

With this approach, changing the signature of eq becomes less dreary. Instead of
performing modifications in all functions relying on eq, it suffices to tweak its top-
level declaration. The reader might wonder why one would need to change the type
of eq; while this example is overly simple for presentation purposes, making minor
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modifications to specifications to, say, add a missing invariant or fix a mistake in a
precondition is common when doing incremental verification. Leveraging F?’s SMT-
backed automation, small changes to the callee often do not require modifying the
callers.

An assumed declaration in F? is tantamount to introducing a hole in our code.
Trying to generate C code containing such a hole would lead to C extern declarations,
and raise compilation failures unless an external definition is provided by the user. In
the following section, we will describe how to fill this hole, and ensure that the provided
definition matches the assumed function type.

5.4.2 Static Call-Graph Rewriting

While hoisting callee arguments to assumed top-level declarations reduces code clutter,
it only alleviates some of the burden that a programmer is facing when using our
methodology. Relying on top-level assumed declarations for callees is not always
desirable. In our map and device example, while send and recv are parametric in find,
find itself is implemented in the module; adding an assumed type declaration would be
redundant. We would rather preserve the existing definition of find, and automatically
rewrite, e.g., send into its mk_send counterpart that takes find as an argument. We
show in this section how to reach this goal using metaprogramming.

Rewriting, Formally Following the programming pattern described in Section 5.3.2,
we assume that every function node gi in the static call-graph is parameterized over
an argument idx : tidx that represents the specialization index, and that this argument
appears in first position.

At definition site, every function definition let f idx x = is replaced by let mkf idx

(g1 : tg1 idx) ...(gn : tgn idx) x =. The gi represent all the callees in the body of f . The tgi
are the types of the original gi, abstracted over the index idx, that is, if the type of gi was
the dependent arrow idx : tidx ! t, then tgi is the dependent function tgi = �(idx : tidx). t,
which allows us to write the application tgi idx. At call-site, when encountering a call
gi idx e, the call becomes gi e and references the bound variable gi instead of the global
name.

Taking our running example, we have tidx = mindex, and eq : i : tidx ! i.k ! i.k !
bool. Our goal is to make sure that find becomes parameterized over an argument eq
specialized for the same value of the index as find. To achieve that, we pick teq = �(i :

tidx). i.k ! i.k ! bool, and thus rewrite find into let mkfind (i : tidx) (eq : teq idx), which
then reduces into let mkfind (i : tidx) (eq : i.k ! i.k ! bool), where the index i is the
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Section map.
Record mindex := { k : Set; v : Set }.
Variable eq : forall i:mindex, i.(k) -> i.(k) -> bool.

Definition find (i : mindex) (x : i.(k)) (ls : list (i.(k) * i.(v))) :
option i.(v) :=
...

End map.

Listing 9: An Equivalent of find Using Coq’s Section Variables

same everywhere, meaning that eq is specialized for the same choice of types as find.

Recursively Traversing the Call-Graph The rewriting presented above is highly
modular; it allows us to rewrite each function in isolation. Following the same process as
for find, we notice when rewriting send that it should be parameterized by a specialized
version of find itself. Empirically, we observe the composition of parametric functions
to be a common pattern. Instead of manually applying our rewriting to send, recv, and
find, we recursively traverse the call-graph, automatically performing rewriting on the
definitions of all callees of the function being rewritten. Using this approach, a user
only needs to invoke the rewriting on the API endpoints of their library, i.e., specific
top-level functions. When encountering a top-level assume declaration, as described in
Section 5.4.1, the traversal stops. Callers end up with the correct additional parameters,
and it will be up to the user to exhibit suitable instantiations for the assumed functions.

Section Variables Our mechanism is very similar to the section variables mechanism
provided by provers such as Coq and Lean. For instance, it would be possible to
automatically parameterize find with eq by using a section in which eq is declared as
a Variable; we show such an example for Coq in Listing 9. The section mechanism in
its current shape would however lead to slightly more work on the user side: it would
work for all the definitions that we mark as assume in F?, as we would simply declare
them as section variables, but doesn’t provide a straightforward way of parameterizing
functions like send and recv with find. Indeed, we would need to both define mk_find
and declare find as a section variable for send and recv to use it, so that they get correctly
parameterized; with our call-graph rewriting we write a single definition for find.

5.4.3 Fine-Grained Code Specialization

While inlining all functions, as explained in Section 5.3.1, is not desirable, specializing
all functions in the call-graph can also conflict with a programmer’s intent. Many
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let while_cond (b: pointer bool) (_:unit) = !*b

let while_body (i: mindex) (b: pointer bool) (lsp: list (i.k * i.v))
(x:i.k) (_:unit) =

let ls = !* lsp in
match ls with
| [] -> upd b false
| (x', _) :: tl ->

if eq x x' then upd b false
else upd lsp tl

let find (i : mindex) (x : i.k) (ls : list (i.k * i.v)) : option i.v =
let b = alloc true in
let lsp = alloc ls in
while (while_cond b) (while_body i b lsp x);
match !* lsp with
| [] -> None
| (_, y) :: _ -> Some y

Listing 10: Hoisting Loop Closures

functions, e.g., alloc and upd from the standard library, are not parametric and thus
do not require specialization; furthermore, to reduce the size of proof contexts and
ease verification, programmers often rely on auxiliary functions that are expected to
be inlined at extraction-time. Consider for instance the while combinator used to
implement find. While inlining the closures for the loop condition and the loop body
is reasonable for small examples, a programmer might find it useful to hoist them for
verification purposes, as shown in Listing 10, while unfolding them at extraction-time
to retrieve idiomatic code.

Designing generic heuristics to determine which functions should be specialized or
inlined is tricky; getting them wrong risks alienating developers when they do not obtain
the shape of the code they expect. Instead of a generic solution, we prefer to leverage
programmers’ knowledge of their code. Using F?’s annotation system, we provide two
attributes, Specialize and Eliminate, that enable a fine-grained control on the rewritings
performed by our approach.

Before rewriting, declarations annotated with Eliminate are preprocessed; their
top-level declarations are removed, and their definitions are inlined at the different
call-sites.2 After preprocessing, instead of rewriting each function definition and callee
as described in Section 5.4.2, we limit the code transformation to functions annotated
with the Specialize attribute.

2In practice, we use a more efficient implementation strategy that allows us to perform our code
rewriting in a single pass, and allows us to avoid traversing big terms that have already undergone a
first round of inlining. The commented implementation of the tactic contains all of the details [328].
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type mindex = { k : Type; v : Type }

[@Specialize] assume val eq (i : mindex): i.k -> i.k -> bool
[@Eliminate] let while_cond (b: pointer bool) (_:unit) = !*b

[@Eliminate]
let while_body (i: mindex) (b: pointer bool)

(lsp: list (i.k * i.v)) (x:i.k) (_:unit) =
... (* elided, same as Listing 10 *)

[@Specialize] let find (i : mindex) (x : i.k)
(ls : list (i.k * i.v)) : option i.v =
let b = alloc true in let lsp = alloc ls in
while (while_cond b) (while_body i b lsp x);
match !* lsp with
| [] -> None | (_, y) :: _ -> Some y

(* After rewriting *)

type mindex = { k : Type; v : Type }

let mk_find (i: mindex) (eq: i.k-> i.k -> bool)
(x: i.k) (ls: list (i.k * i.v)): option i.v =

let b = alloc true in let lsp = alloc ls in
while (fun () -> !* b)

(fun () -> let ls = !* lsp in
match ls with
| [] -> upd b false
| (x', _) :: tl ->

if eq x x' then upd b false
else upd lsp tl);

match !* lsp with
| [] -> None
| (_, y) :: _ -> Some y

Listing 11: Fine-Grained Control on Code Transformation

We show in Listing 11 a complete example using the different features presented in
this section. The code on the right corresponds to the F? code on the left, after auto-
matically rewriting find. As while_body and while_cond are annotated with Eliminate,
they are inlined during preprocessing. The eq function declaration is annotated with the
Specialize attribute; it therefore appears as an argument to mk_find. Other functions,
i.e., alloc and upd take their roots in F?’s standard library, and are not annotated with
any of our custom attributes. They are therefore ignored and left as-is while statically
rewriting the call-graph. In real developments (see sections 5.5 and 5.6), annotating
the functions proved to be extremely straightforward and light. In return, it allowed us
to automatically transform the code into a higher-order version, which represents a fair
amount of work when performed manually.
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5.4.4 Implementation in Meta-F?

We have implemented this call-graph rewriting using syntax inspection, term generation
and definition splicing in Meta-F? [218]. Meta-F? allows the programmer to script the
F? compiler using user-written F? programs, a technique known as elaborator reflection
and pioneered by Lean [329] and Idris [330]. This approach means that any fresh term
generated by a meta-program must be re-checked for soundness; we therefore do not
prove any results about our procedure and let F? validate the terms we produce. When
calling our procedure, the user passes the roots of the call-graph traversal, i.e., the API
endpoints of their library, along with the type of the index. The procedure traverses
the call-graph, generates rewritten variants of all the definitions, and inserts them at
the current program point.

We insist on the fact that the entire rewriting procedure was implemented in user-
space and does not need to be trusted. One might wonder how we enforce that the
types of the generated, higher-order definitions are correct. Indeed, if our meta-program
generates definitions which don’t have the correct type, successively type-checking
those definitions against those types doesn’t give us any guarantees. In practice, we
check this later when instantiating those higher-order definitions, by annotating their
specializations: if the types generated by our meta-program were incorrect, type checking
would fail at this stage. As we use helpers to factor out types between the generic and
the specialized definitions, annotating those instantiations doesn’t create any burden on
the user side. Finally, one last point of concern would be that our rewriting procedure
transforms the functions in such a way that the generated C code has an unexpectedly
poor performance. We note that, due to the nature of the transformations we perform,
which consist, after instantiation and partial evaluation, in specializing part of code, this
shouldn’t happen in practice. Of course, this doesn’t dispense us from benchmarking the
code, which we do. As our technique gives users fine-grained control on the shape of the
generated code, it is also possible to tune the output to reach the desired performance.
In particular, we did not see any noticeable change of performance after adapting the
code from HACL? to use the present technique (Section 5.5). The interested reader can
find our entire, generously commented implementation online [331].

Comparison with existing techniques Our mechanism shares similarities with
other type specialization techniques. Specifically, Haskell’s SPECIALIZE pragma and
Rust’s trait system attempt to solve very similar problems, albeit as a trusted whole-
program monomorphization pass within their respective compilers, as opposed to a
source-to-source rewriting pass. Putting aside the problem of working within a proof
assistant, we note that by contrast our technique is 1) untrusted and thus doesn’t



5.5 Application to the HACL
? Cryptographic Library 103

require extending the F* compiler, 2) allows specializing over values, functions, while
leveraging general-purpose dependent types, and 3) gives the user fine-grained control
on how the specialized call-graph should look like, in particular for the purpose of
outputting a readable program.

Adaptability of our technique to other proof assistants. While we implemented
our approach in F?, our techniques are not tied to one particular language. Our work
focuses on the verification of shallowly embedded programs; although a discussion of the
advantages and disadvantages of the use of deep embeddings or shallow embeddings is
out of scope of this chapter, it is worth noting that the extraction of shallowly embedded
programs has been used in many other verification projects, relying on a variety of proof
assistants [192, 238, 332–335]. Restricting our scope to the verification of shallowly
embedded programs, our approach needs the following key ingredients to be applicable.
(1) We need to be able to encode functors, and as we explained in Section 5.2 there
exists a well known technique to do so in dependently-typed languages such as Coq,
Lean or Idris. (2) We need elaborator reflection to implement the rewriting procedure;
some languages like Lean or Idris provide it in their meta-language, while some other
tools like Coq would require writing a plugin. (3) We need the ability to partially
evaluate the specialized programs, which is a common feature of the aforementioned
tools. (4) We need an extraction mechanism, which is supported for instance by Coq,
Lean and Idris; in particular, we note that Lean and Idris support the extraction to a
low-level language such as C or C++. We thus conclude that our methodology could
be ported to either one of these proof assistants without fundamental difficulties.

5.5 Application to the HACL
? Cryptographic Library

We introduced our approach on a small example in the previous sections. We now
demonstrate its applicability on real-world examples by presenting its use on heavily
optimized implementations of cryptographic primitives inherited from the HACL? [127,
233] and EverCrypt [128] libraries. HACL? is a cryptographic library written in F?

which compiles to C; it offers vectorized versions of many algorithms via C compiler
intrinsics, e.g., for targets that support AVX, AVX2 or ARM Neon. EverCrypt is a
high-level API that multiplexes between HACL? and Vale-Crypto [336, 337], a library of
verified primitives implemented in assembly; it supports dynamic selection of algorithms
and implementations based on the target CPU’s feature set. Combined with EverCrypt,
HACL? features 105k lines of F* code for 72k lines of generated C code (excluding
comments and whitespace, as well as the Vale assembly DSL). Those case studies
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are not new, but were adapted to apply our technique. We explain in this section
how we achieved this, and by doing so show how they stress all the requirements
which motivated our new approach and which we described in the past sections; that
is, the need for 1. zero-cost abstractions which provide high-level modularity and
composability; 2. a fine-grained control on the shape of the generated code to obtain
efficient and idiomatic implementations; 3. a flexible and lightweight approach which
limits the amount of boilerplate and handles a wide range of scenarios. We detail in
Section 5.7.1 the limitations of the previous techniques, and the consequent benefits we
got by applying our new approach.

5.5.1 Hardware-Specialized Code: ChaCha20-Poly1305

We first present the application of our approach on one of our simplest examples,
the ChaCha20-Poly1305 cryptographic construction. This case study illustrates how
we used our approach to generate, from a single generic implementation, optimized
code specialized for specific hardware targets. ChaCha20-Poly1305 is an algorithm for
authenticated encryption with additional data (AEAD). The specifics of the construction
are orthogonal to this chapter; for presentation purposes, it is sufficient to know that it
combines two cryptographic primitives: the ChaCha20 stream cipher, and the Poly1305
message authentication code (MAC).

Depending on the hardware used, both ChaCha20 and Poly1305 admit several
implementations. In particular, these primitives are especially well-suited to SIMD
vectorization, by which we apply an operation (e.g., multiply by a constant) on all
the elements of a vector at the same time, and can be highly optimized when such
instructions are available. Previous work on HACL? [233] demonstrated how to write
and verify generic, vectorization-agnostic implementations of these algorithms, which
could be specialized by partial evaluation to provide idiomatic C implementations. The
approach then used to make the implementation generic was plagued with various
issues, whose detailed description we defer until Section 5.7; in short, it struggled with
scalability.

We now show how we implemented the cryptographic construction in our DSL. We
mentioned earlier (Section 5.3.2) that the index captures the set of possible specializa-
tions. Our running example admitted an infinite set of possible specialization choices,
as long as the key type admitted a decidable equality. In the example below, we only
capture a finite set of possible specialization choices, which we express via a finite
enumeration of type arch_index.

type arch_index = | V32 | V128 | V256
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[@Specialize]
assume val chacha20_encrypt: w:arch_index -> chacha20_encrypt_st w

[@Specialize]
assume val do_poly1305: w:arch_index -> poly1305_st w

let aead_encrypt (w:arch_index) ... =
chacha20_encrypt w ...;
do_poly1305 w ...

To parameterize over both primitives, we rely on abstract signatures for ChaCha20
and Poly1305, as described in Section 5.4.1. The types chacha20_encrypt_st and
poly1305_st correspond to the function types of both primitives, where the type of the
arguments (e.g., the Poly1305 context) depend on the w: arch_index parameter. Both
functions are annotated with the Specialize attribute, indicating that they are parame-
ters of the implementation. As aead_encrypt calls these two functions, our rewriting
procedures generates a higher-order combinator mk_aead_encrypt which requires two
functions for chacha20_encrypt and do_poly1305. The aead_decrypt function is rewrit-
ten in a similar manner. The last step is to instantiate this combinator with different
existing implementations for both primitives, for instance one specialized for 128-bit
vectorization.

let aead_encrypt : aead_encrypt_st V128 =
mk_aead_encrypt V128 do_poly1305_128 chacha20_encrypt_128

The resulting C code is idiomatic, and close to what one would expect from hand-
written C code, albeit with formal guarantees about its correctness and constant-time
execution. Case in point, the corresponding code in HACL? was previously integrated
into Firefox [233].

5.5.2 Composing Implementations: Curve25519

We saw in the previous section a first application of the basic features of our approach.
In this section, we demonstrate how our technique gives us composability on a real-world
example, allowing us to simplify a collection of verified implementations of a widely
used elliptic curve, Curve25519 [338].

The specifics of the algorithm are out of scope for this chapter; in this presentation,
it suffices to say that it relies on modular arithmetic in a mathematical field, which
admits two implementations based on different representations of the field elements.



106 Modularity and Zero-Cost Abstractions for Program Verification

Furthermore, one of these representations relies on a set of primitives (e.g., addition)
which themselves admit two different implementations, one in Low?, and one in Vale
assembly when specific hardware instructions are available.

Previous work on EverCrypt [128] provided a single verified client-facing API
multiplexing between different implementation, that is, an API which selects the best
implementation depending on the hardware available; these implementations however
lived side by side, duplicating a lot of code. Using our approach, we now show how
we reduce code redundancy, by aggressively sharing more code between those different
implementations, and only specializing between the different field representations and
implementations a posteriori. Providing a single generic implementation that will
be automatically specialized reduces the maintenance cost of the HACL? codebase,
while also simplifying the development of algorithmic improvements across our different
versions. Using OCaml syntax, the end result allows users to pick between three different
versions of Curve25519:

• module Curve64Lowstar = Curve25519(Field64(CoreLowstar))

• module Curve64Vale = Curve25519(Field64(CoreVale))

• module Curve51 = Curve25519(Field51)

An important point to notice is that we leverage our DSL to organize our imple-
mentation into three layers, that we later compose with each other. For presentation
purposes, we present here a simplified version of Curve25519 which omits several layers
and functions. We refer the interested reader to the HACL? repository [339] for our
complete implementation.

Composing Abstractions. Curve25519 exposes several functionalities, including
scalarmult, which performs scalar multiplication on the elliptic curve. This function calls
into encode_point, which itself relies on the field addition fadd. All these functions are
parameterized by an index corresponding to the field representation, of type field_index.
For clarity of the generated code, we wish to avoid inlining any of these functions; we
thus annotate each definition with the Specialize attribute.

type field_index = | F51 | F64

[@Specialize] assume val fadd (i:field_index) -> fadd_t i

[@Specialize] let encode_point (i: field_index) ... = ... fadd ...
[@Specialize] let scalarmult (i:field_index) ... = ... encode_point ...
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The code is rewritten as one might expect. We can provide multiple specializations
for one choice of index. If i is F64, we can generate both encode_point_64_lowstar and
encode_point_64_vale:

let encode_point_64_lowstar = mk_encode_point F64 Lowstar.Field64.fadd ...
let encode_point_64_vale = mk_encode_point F64 Vale.Field64.fadd ...

In addition, we can generate encode_point_51 (elided). This in turns allows us to
generate three versions for scalarmult:

let scalarmult_51 = mk_scalamult F51 encode_point_51 ...
let scalarmult_64_lowstar = mk_scalamult F64 encode_point_64_lowstar ...
let scalarmult_64_vale = mk_scalamult F64 encode_point_64_vale ...

In effect, leveraging the composability permitted by our approach, the Curve25519
implementation is organized into three layers: the field arithmetic, the field encoding
(F51 or F64), and the elliptic curve operations.

5.5.3 A Highly Parametric Example: The HPKE Construction

We now present the culmination point of our series of cryptographic primitives: HPKE
(Hybrid Public-Key Encryption) [268], a recent cryptographic construction that combines
AEAD (Authenticated Encryption with Additional Data), DH (Diffie-Hellman), and
hashing. The implementation of HPKE ticks several of the boxes that we wished to
cover with our technique, that is: we build on top of several functionalities, each of these
functionalities can be instantiated with several algorithms (e.g., Curve25519 or P256 for
DH, ChaCha20-Poly1305 or AES-GCM for AEAD), and every algorithm admits several
implementations; we have a complex call graph divided into several layers. Omitting
several definitions for brevity, we structure the code as follows, using hpke_alg as our
index.

type aead_alg = AES128_GCM | AES256_GCM | CHACHA20_POLY1305
type hpke_alg = dh_alg * aead_alg * hash_alg

type key_aead (alg: hpke_alg) = lbuffer U8.t (key_len (snd3 alg))

[@Specialize] assume val sign: (alg:hpke_alg) -> sign_t alg
[@Specialize] assume val enc: (alg:hpke_alg) -> enc_t alg

[@Eliminate]
let helper (alg: hpke_alg): helper_t alg =

fun ... -> ... sign alg ...
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[@Specialize]
let hpke_sealBase (alg: hpke_alg): hpke_sealBase_t alg = fun ... ->

... helper alg ...

... enc alg ...

The index hpke_alg is a triple that captures all possible algorithm choices prescribed
by the HPKE RFC. We thus write specifications, lemmas, helpers, and types paramet-
rically over the index as standalone definitions. The key_aead type, for example, is
parametric over triplets of algorithms, and defines a low-level key to be an array of bytes
whose length is the key length for the chosen AEAD. The same systematic parameteri-
zation over hpke_alg can be carried to functions and their types, e.g., hpke_sealBase,
which encrypts and authenticates a plaintext. We use small helpers, e.g., helper, to
make verification robust in the presence of an SMT solver and ensure modularity of
the proofs, as explained in Section 5.4.3; because we want to evaluate them away at
extraction time, we mark them with the Eliminate attribute.

One possible specialization, out of hundreds of possible options, is to pick the F51
version Curve25519 for DH (Section 5.5.2), the AVX 128-bit variant of Chacha20-
Poly1305 for AEAD (Section 5.5.1), and SHA2-256 for hashing.

let alg = (DH_CURVE25519, CHACHA20_POLY1305, SHA2_256)
let sealBase = mk_hpke_sealBase alg aead_encrypt_cp128 scalarmult_51 ...

The HPKE example is emblematic of our modularity pattern. It allows the pro-
grammer to author their verified code while thinking about the choice of functionalities ;
picking concrete implementations for each functionality and specializing the code ac-
cordingly is left to a later phase, and is entirely handled by our automated rewriting.
All the user has to do is pick their particular choice of algorithms and implementations,
and enjoy the resulting specialized HPKE.

Out of hundreds of possible choices, the HACL? library provides 30 different variants of
HPKE. Adding a new variant requires minimal effort; furthermore, with our methodology,
each variant lives in its own separate file, which can then be compiled with exactly the
right compiler options without any danger of miscompilation.

5.6 A Generic State Machine: the Streaming API

In the previous section, our technical contributions consisted of honing the proofs and
restructuring the codebase of pre-existing algorithms, solving deep technical roadblocks
in the process. In this section, we describe a novel case study that was enabled by
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the present work. We first explain the nature of the problem; then show how our
methodology came in judiciously and allowed us to structure our code to achieve
maximum modularity.

We want to emphasize that this case study is an important contribution, on its
own, for two reasons. First, it encompasses all the difficulties of carrying out large-scale
verification of low-level code: the development is built on top of already complex
implementations (i.e., the HACL? hashes); it is divided into several modular layers,
which must each be specialized in a myriad of ways; finally, unverified implementations
of this code have historically caused critical bugs in high-profile software [300, 301], and
this complexity pervades our invariants, which were subtle and difficult to get right.
Second, and perhaps more importantly: the cryptographic community has some folk
knowledge of what a block algorithm is; but as far as we know, this folk knowledge was
never distilled into formal, precise language, like we do here.

5.6.1 Illustrating Streaming APIs with the Hash example

Many cryptographic algorithms offer identical or similar functionalities. For example,
SHA2 [340], SHA3 [341], and Blake2 [342, 343] (in no-key mode) all implement the
hash functionality, taking an input text to compute a resulting digest. As another
example, HMAC [344], Poly1305 [345], GCM [346], and Blake2 implement the message
authentication code (MAC) functionality, taking an input text and a key to compute a
digest.

At a high level, these functionalities are simply black boxes with one or two inputs,
and a single output. Taking HACL?’s SHA2-256 implementation as an example, this
results in a natural, self-explanatory C API:

void sha2_256(uint8_t *input, uint32_t input_len, uint8_t *dst);

This “one-shot” API, however, places unrealistic expectations on clients of this
library. For instance, the TLS protocol, widely-used to secure internet communications,
computes repeated intermediary hashes of the handshake data transmitted so far. Using
the one-shot API would be grossly inefficient, as it would require re-hashing the entire
handshake data every single time. In other situations, merely hashing the concatenation
of two non-contiguous arrays with this API requires a full copy into a contiguous array.

Cryptographic libraries thus need to provide a different API that allows clients to
perform incremental hash computations. A natural candidate for this is the block API:
all of the algorithms we mentioned above are block-based, meaning that, under the
hood, they follow the state machine from Figure 5.1: after allocating an internal state



110 Modularity and Zero-Cost Abstractions for Program Verification

alloc init

update

last finish free

update block

init

init

Figure 5.1: State Machine of an Error-Prone
Block-Based API
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Figure 5.2: State Machine of a Safe,
Streaming API

(alloc), they initialize it (init), process the data (update_block) block by block (for an
algorithm-specific block size), perform some special treatment for the leftover data
(update_last), then extract the internal state (finish) onto a user-provided destination
buffer, which then holds the final digest. Revealing this API allows clients to feed their
data into the hash incrementally, meaning that at first glance, our earlier issues are
solved as we have found a way to hash data block by block without holding onto the
entire input.

Unfortunately, this block API is wildly unsafe to call from unverified C code. First,
it requires clients to maintain a block-sized buffer that, once full, must be emptied
via a call to update_block. This entails non-trivial modulo-arithmetic computations
and pointer manipulations, which are error-prone [300, 301]. Second, clients can easily
violate the state machine. For instance, when extracting an intermediary hash, clients
must remember to copy the internal hash state, call the sequence update_last and finish
on the copy, free that copy, and only then resume feeding data into the original hash
state. Third, algorithms exhibit subtle differences: for instance, Blake2 must not receive
empty data for update_last, while SHA2 does not suffer from this restriction. In short,
the block API is error-prone, confusing, and likely to lead to programmer mistakes.

We thus wish to take all of the block-based algorithms, and devise a way to wrap
their respective block APIs into a uniform, safe API that eliminates all of the pitfalls
above. We dub this safe API the streaming API (Figure 5.2): it has a degenerate state
machine with a single state; it performs buffer management under the hood; it hides
the differences between algorithms; and performs necessary copies as-needed when a
digest needs to be extracted.

Writing and verifying a copy of the streaming API for each one of the eligible
algorithms would be tedious, not very much fun, and bad proof engineering. Instead, we
apply the methodology exposed throughout this chapter, and set out to write a generic
API transformer that turns any block algorithm into its safe, streaming counterpart. We
begin with a description of a block algorithm’s stateful API and intended specification
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type state_index = {
s : Type; (* Low-level type *)

t : Type; (* A pure representation of an s *)

footprint : mem -> s -> Ghost loc;
invariant : mem -> s -> Ghost Type;

(* Reflect an s in a memory snapshot as a pure value *)

v : mem -> s -> Ghost t;

(* Adequate framing lemmas *)

frame_invariant:
ss:state_index -> l:loc -> s:ss.s -> h0:mem -> h1:mem ->
Lemma
(requires

ss.invariant h0 s /\
loc_disjoint l (ss.footprint h0 s) /\
modifies l h0 h1)

(ensures
ss.invariant h1 s /\
ss.v h0 s == ss.v h1 s /\
ss.footprint h1 s == ss.footprint h0 s);

... (* Omitted: additional lemmas *) }

(* Stateful operations *)

[@Specialize] assume val malloc (#i: state_index) ... : ST ...
[@Specialize] assume val free (#i: state_index) ... : ST ...
[@Specialize] assume val copy (#i: state_index) ... : ST ...
... (* Omitted *)

Listing 12: The stateful API

using our DSL – this will be our “functor argument”.

5.6.2 The Essence of Stateful Data

Before we get to the block API itself, we need to capture a more basic notion, that
of an abstract piece of data that lives in memory, composes with the Low? memory
model and modifies-clause theory [347], and supports basic operations such as allocation,
de-allocation, and copy. This is the stateful API presented in Listing 12.

We parameterize the implementation with the record state_index. We mentioned
earlier that the index captures the space of all possible instantiations – here, this space
is constrained by the presence of valid specifications that satisfy the behavioral lemmas
we require. This is an extension of our previous style: the index bundles up in one
record all of the type-level arguments to our functions. The specifications are used
only in the proofs and are not relevant at runtime; for this reason we put them in the
index and mark them as ghost by using the Ghost effect. Similarly to frameworks like



112 Modularity and Zero-Cost Abstractions for Program Verification

Why3 or Dafny, ghost code (and variables) in F? is computationally irrelevant code; as
such it must obey some restrictions, for instance, it is possible to convert a non-ghost
value to a ghost value, but not the other way around. At extraction time, ghost code is
erased, typically by being replaced with unit values (which are later eliminated). As the
specifications are grouped in the index, they also do not undergo code specialization
and higher-order rewriting, and do not need to be annotated with our DSL. This
establishes a distinction between erased arguments (types, specifications, lemmas),
which are handled via regular polymorphism and as such appear within the index, and
run-time functions, which must undergo rewriting, higher-order parameterization, and
as such rely on assume val and our rewriting mechanism.

Importantly, we saw in Section 5.5 the use of closed enumeration types for the
choice of the index, by which we allow a finite set of possible specializations. In the
present case, due to the highly generic nature of our code we need to use an open ended
parameterization (i.e., a record), by which the index captures an infinite set of possible
choices of specialization.

The state_index record contains a low-level type s (e.g., lbuffer U8.t 64ul, an array of
length 64 containing bytes) which comes with an abstract footprint (e.g., the extent of
that array in memory), and an abstract invariant (e.g., the array is live). The footprint
and the invariant live in the Ghost effect, meaning they are computationally irrelevant
and thus erased at extraction. The low-level type can be reflected as a pure value of
type t (e.g., a sequence) using a ghost function v (e.g., as_seq, which interprets arrays
as pure sequences). Outside of state_index, we declare some administrative lemmas
which allow harmonious interaction with Low?’s modifies-clause theory; for instance, the
frame_invariant lemma which we need because of the specificities of the Low? memory
model: under the pre-condition that the state invariant holds in an initial memory
snapshot h0, and that the memory locations modified between h0 and h1 are disjoint
from the state footprint, then the invariant also holds in h1 and the (pure reflection
of the) state and the footprint are left unchanged; we automate its application with
an SMT pattern (elided), which indicates to Z3 when to instantiate this lemma. The
stateful operations allow, respectively, allocating a fresh state on the heap; freeing a
heap-allocated state; and copying the state.

As we need two different stateful objects for our block implementation, states and
keys (see 5.6.3), we actually declare two stateful APIs, in modules State and Key
respectively; note that in practice we factor out the types of the declarations, so as not
to duplicate code. Writing instances of the stateful APIs is easy, the most complex one
being the internal state of Blake2 which occupies 46 lines of code, with all proofs going
through automatically.
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5.6.3 The Essence of Block Algorithms

We now capture the essence of a block algorithm by authoring an API that encap-
sulates a block algorithm’s types, representations, specifications, lemmas, and stateful
implementations in one go. We need the block API to capture four broad traits of a
block algorithm, namely i) explain the runtime representation and spatial characteristics
of the block algorithm, ii) specify as pure functions the transitions in the state machine,
iii) reveal the block algorithm’s central lemma, i.e., processing the input data block by
block is the same as processing all of the data in one go, and iv) expose the low-level
run-time functions that realize the transitions in the state machine. The result appears
in Listing 13; for conciseness, we omit the full statement of the fold lemma, as well as
the stateful type of the remaining transitions of the state machine. Similarly to the
stateful API, we gather the specification of the block API in the index, that is in the
record state_index. The actual definition is about 150 lines of F?, and appears in the
anonymous supplement.

Run-time characteristics. A block algorithm revolves around its state, which
implements the State stateful API. It may need to keep a key at run-time (km = Runtime,
e.g., Poly1305), or keep a ghost key for specification purposes (km = Erased, e.g., keyed
Blake2), or may need no key at all, in which case the key field is a degenerate instance
of the Key stateful API, such that key.s = unit.

Specification. Using state.t, i.e., the algorithm’s state reflected as pure value, we
specify each transition of the state machine at lines 15-20. Importantly, rather than
specify an “update block” function, we use an “update multi” function that can process
multiple blocks at a time. We do not impose any constraints on how update_multi is
authored, we only request the lemma update_multi_is_a_fold (line 23), which states
that it obeys the fold law:

update_multi_s ((update_multi_s s l1 b1) (l1 + length b1) b2) ==
update_multi_s s l1 (concat b1 b2)

This style has several advantages. First, this leaves the possibility for optimized
algorithms that process multiple blocks at a time to provide their own update_multi
function, rather than being forced to inefficiently process a single block. For non-
optimized algorithms that are authored with a stateful update_block, we provide a
higher-order combinator that derives an update_multi function and its correctness
lemma automatically. Second, by abstracting over how blocks are processed, we capture
a wide range of behaviors. For instance, Poly1305 has immutable internal state for
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storing precomputations, along with an accumulator that changes with each call to
update_block: we simply pick state.t to be a pair, where the fold only operates on the
second component.

The block lemma. The spec_is_incremental lemma captures the key correctness
condition and ties all of the specification functions together; by doing so it also specifies
the order of the transitions of the state machine. For a given piece of data, the result
hash1, obtained via the incremental state machine from Figure 5.1, is the same as
calling the one-shot specification spec_s. This lemma relies on a helper, split_at_last,
which splits a sequence into a series of blocks and a rest, and was carefully crafted
to subsume the different behaviors between Blake2 and other block algorithms; in
particular, it makes sure the rest is not empty unless the initial sequence is empty, so
that update_last is never called on an empty sequence in the case of Blake2.

let split_at_last (block_len: U32.t) (b:seq U8.t) =
let n = length b / block_len in
let rem = length b % block_len in
let n = if rem = 0 && n > 0 then n-1 else n in
let blocks, rest = split b (n * l) in blocks, rest

Stateful implementations. We now zoom in on the update_multi low-level signature,
which describes a block’s algorithm run-time processing of multiple blocks in one go
(Listing 13). This function is characterized by the spec-level update_multi_s; under the
proper preconditions (elided here), it only affects the memory locations of the state s
(line 37), preserves the footprint (line 38) and the invariant (line 39), and updates the
state according to the pure spec (line 42).

The combination of the lemma spec_is_incremental along with the Low? signatures
of update_multi and others restricts the API in a way that the only valid usage is
dictated by Figure 5.1. Designing this API while looking at a wide range of algorithms
forced us to come up with a precise, yet general enough description of what a block
algorithm is. We have been able to author instances of this API for SHA3, SHA2 (4
variants), Blake2 (4 variants), Poly1305 (3 variants), and legacy algorithms MD5 and
SHA1. This includes the vectorized variants of these algorithms, when available. By
materializing those instances, we were able to tie together a whole class of algorithms
under a single unifying interface, therefore materializing the (informal) claim from the
cryptographic community that “these are all blocks algorithms”.
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5.6.4 A Streaming API

Equipped with an accurate and precise description of what a block algorithm is, we are
now ready to use our approach to write an API transformer that takes an instance of
the block API, implementing the state machine from Figure 5.1, and returns the safe
API from Figure 5.2. We now present the definition of the run-time state of streaming
API. The state is naturally parameterized over a block_index, and wraps the block
algorithm’s state with several other fields.

[@CAbstractStruct]
type state_s (bi: block_index) = {

block_state: bi.state.s;
buf: buffer U8.t { length buf = bi.block_len };
total_len: U64.t;
seen: erased (seq U8.t);
p_key: optional_key bi.km bi.key; }

let state (bi: block_index) = pointer (state_s bi)

The CAbstractStruct attribute ensures that the C code below will appear in the
header. This pattern is known as "C abstract structs" and is commonly used by C
programmers to provide a modicum of abstraction: the client cannot allocate structs
or inspect private state, since the definition of the type is not known; it can only hold
pointers to that state, which forces them to go through the API.

struct state_s;
typedef struct state_s *state;

First, buf is a block-sized internal buffer, which relieves the client of having to
perform modulo computations and buffer management. Once the buffer is full, the
streaming API calls the underlying block algorithm’s update_multi function, which
effectively folds the blocks into the block_state. The total_len field keeps track of
how much data has been fed so far, information that is needed for many block-based
algorithms, notably hashes which encode the length of the input as part of the final
block in order to rule out padding attacks.

The most subtle point is the use of a ghost (i.e., computationally irrelevant and
erased at extraction time) sequence of bytes, seen, which keeps track of the past, i.e.,
the bytes we have fed so far into the hash. This is reflected in the invariant, which
states that if we split the input data into blocks, then the current block algorithm state
is the result of accumulating all the blocks into the block state; the rest of the data
that doesn’t form a full block is stored in buf.
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let state_invariant (bi: block_index) (h:mem) (s:state bi) =
let s = deref h s in
let State block_state buffer total_len seen key = s in
let blocks, rest = split_at_last (U32.v bi.block_len) seen in
(* omitted *) ... /\
bi.state.v h block_state ==

bi.update_multi_s (bi.init_s (optional_reveal h key)) 0 blocks /\
slice (as_seq h buffer) 0 (length rest) == rest

The finish function takes a block specification bi. Under the hood, it calls State.copy
to avoid invalidating the block_state; then update_last followed by finish, the last two
transitions of Figure 5.1. Thanks to the correctness lemmas in the block API along
with the invariant, finish states that the digest written in dst is the result of applying
the full block algorithm to the data that was fed into the streaming state so far.

[@Specialize]
val finish (bi:block_index):

s:state bi ->
dst:buffer U8.t{len dst == bi.out_len} ->
ST unit
(requires

fun h0 -> ... (* omitted *) )
(ensures

fun h0 s' h1 ->
... /\ as_seq h1 dst == bi.spec_s (get_key h0 s) (get_seen h0 s))

One point of interest is the usage of a ghost selector get_seen, which in any heap
returns the bytes seen so far. We have found this style the easiest to work with, as
opposed to a previous iteration of our design where the user was required to materialize
the previously-seen bytes as a ghost argument to the stateful functions, such as finish
above. The previous iteration placed a heavy burden on clients, who were required
to perform some syntactically heavy book-keeping to thread this argument through
function calls; the present style is much more lightweight.3

This streaming API has one limitation, in that we cannot prove the absence of
memory leaks. This is a fundamental limitation of using the ST effect in Low?. However,
this can be easily addressed with manual code review or off-the-shelf tools, such as
clang’s −fsanitize=memory.

3The anonymous supplement contains an in-depth explanation of the respective merits of the three
styles we considered, in file Hacl.Streaming.Functor.fsti.
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A Note on Properly Compiling the State Type An interesting technicality is
that the state type, as introduced above, generates runtime casts due to the Letouzey-
style extraction pipeline of F?, and as such, does not compile to C. Casts between
values of different types and sizes are admissible when extracting to OCaml, owing to
its universal boxed value representation (as long as one is willing to use Obj.magic).
But C has no > type, meaning that such casts are rejected by KaRaMeL.

Looking closely at state_s, we remark that it is parameterized by a value, not a
type. It therefore won’t extract to a definition of the form type ↵t. Second, it uses a
type-level field projection for block_state, which is also not part of the simple grammar
of types of either OCaml or C.

We do instantiate state_s over a specific choice of argument bi. But inductive types
are typed nominally, and an application of state_s to its argument generates a type
instantiation, not a fresh, specialized state type definition. This is in contrast to a type
abbreviation, which, being typed structurally, would simply reduce away, circumventing
this issue.

We could rewrite this type too, using our tactic, but there is actually a simpler way.
We add a seemingly useless type (not value!) parameter to state_s:.

[@CAbstractStruct]
type state_s' (bi: Block.block_index)

(s: Type { s == bi.state.s }) = {
block_state: s;
... (* rest as before *) }

let state_s bi = state_s' bi bi.state.s

From the point of view of type-checking, this is strictly equivalent to the previous
definition. But from the point of view of extraction, after erasure, bi becomes an unused,
erased type parameter of state_s' (it eventually gets eliminated), while s, at Type,
becomes a regular parameter of the (extracted) data type state_s'. Uses of state_s', via
the state_s wrapper, become regular type applications. This means that the resulting
code contains no casts, and simply relies on parameterized data types, which are handled
by KaRaMeL and monomorphized via a whole-program compilation pass.

This rewriting trick significantly improves the quality of the generated code, and to
the best of our knowledge, had never been documented before.

A Note on Additional Compile-Time Parameters In addition to types and
lemmas, we also add, within our index, extra parameters that reduce at compile-time
using normal reduction mechanisms. These act as supplemental “tweaking knobs” that
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control the shape of the produced code. An example is the block size, which is specific
to each algorithm, reduces using normal partial evaluation mechanisms, and eventually
generates stack-allocated arrays of the correct block size (rather than with a run-time
dynamic check).

Another one of these knobs is the key management policy, which is another choice
the user can tweak when instantiating the streaming API.

type key_management = | Runtime | Erased

let optional_key (km: key_management) (key: Key.state_index) : Type =
match km with | Runtime -> key.s | Erased -> Ghost.erased key.t

The km parameter of the block API exists only at compile-time, not at run-time.
All of its uses are partially evaluated away. It allows the block algorithm to indicate
whether it needs a key. In the streaming code, every reference to key goes through a
wrapper like the one above. After partial evaluation, the optional_∗ wrappers reduce
to either a proper key type, or to a ghost value, which then gets erased to unit. This
allows, for instance, generating either an init function that does not take a key (hash
functionality), or an init function that does take a key (MAC functionality). Thanks to
the various unit-elimination optimizations of KaRaMeL, the former case results in no
superfluous fields in the state type, nor superfluous arguments to the API functions.

5.7 Evaluation

We now evaluate the efficiency of our approach. Recall that our original goal was to
support authoring large-scale, low-level verified software; in this section, we therefore
focus on proof engineering and programmer productivity metrics. Our case studies
involve pre-existing algorithms from the HACL? project; the run-time performance of
the code is thus that of the underlying cryptographic algorithms, for which we did not
observe noticeable changes in performance after we updated the code. We therefore leave
a crypto-oriented performance discussion to the original HACL? paper [233]. In total,
the modifications we performed had an impact on 30k lines of the C code generated by
compiling the HACL? library.

5.7.1 Core Algorithms: ChaCha20-Poly1305, Curve25519, HPKE

Qualitative Study The HACL? library originally featured ChaCha20-Poly1305 and
Curve25519, in multiple variants, but got by without the use of our code rewriting tactic.
For Curve25519, the original code was playing build system tricks, and would tweak the
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include path to select, say, one implementation of the Curve field over another. Needless
to say, this did not scale. Every tweak to the include path invalidates intermediary
build files, with two consequences: first, the build time rapidly skyrockets; second, the
limitation carries over to verified clients of HACL? which in turn need to play the same
include path tricks if they want to use such algorithms.

In the case of ChaCha20-Poly1305, the existing code was in better shape, but not
by much. It relied on a static dispatch style (not described here), which came with
severe limitations. Notably, it imposed that all variants of the same algorithm be in one
C file. This made regular C and vectorized implementations appear in the same file;
as the vectorized version would mandate special compiler flags (here, −mavx −mavx2),
the C compiler would happily use AVX2 instructions for the non-vectorized, regular C
version, causing illegal instruction errors later on [348].

We upgraded both of these algorithms within the HACL? codebase to use our
code-rewriting tactic, which addressed all of the roadblocks above, and resulted in
significantly improved programmer experience and productivity. Our techniques also
paved the way for the HPKE implementation in HACL?. Before our work, HACL? could
not distinguish between a notion of algorithm (e.g., P-256 vs. Curve25519) and multiple
implementations (e.g., Curve25519-64 vs. Curve25519-51) of said algorithm. This made
a modular and specializable HPKE impossible to author. Using our framework, the
HACL? authors were able to express HPKE naturally, modularly and generically, while
allowing more than 60 possible choices of algorithms and corresponding implementations,
each in their own file. This simply could not have happened without the principles
exposed in this article.

Quantitative Study In the design of elaborator reflection, the user (i.e., the tactic)
is allowed to create ill-typed terms. The API does not statically enforce the creation
of well-typed terms; it simply re-checks user-provided terms before they are added to
the context. This means that the rewritten terms produced by our tactic need to be
re-checked by the F? typechecker.

We measure the verification overhead that comes from re-verifying those rewritten
terms. Specifically, Table 5.3 measures the overhead incurred by re-checking the tactic-
generated definitions, relative to the total verification time for a given algorithm. In
most cases, the overhead is < 100%, because we don’t rewrite lemmas and proofs. We
need to investigate why HPKE is an outlier; we suspect the Z3 solver might be overly
sensitive to the shape of the proof obligations it receives; since we rewrite the call-graph,
the resulting proof obligations are slightly different from the ones generated by the
original call-graph.
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One might wonder about the impact of our approach on programmer productivity.
Indeed, re-verifying the terms has a non-negligible impact on the build time which, in
turn, affects programmer productivity. In practice this did not prove to be an issue: we
generally need fast incremental builds (and in particular, fast type-checking of the code)
when working on the generic definitions and their proofs (i.e., the functions implemented
in the DSL), or when working on the clients of the specialized instantiations after we
run the call-graph rewriting and verified the result.

5.7.2 Implementation and Usability of our DSL

Tactics are not part of the trusted computing base (Section 5.2); unlike, say, MTac2 [349],
Meta-F? [218] does not allow the user to prove properties about tactics, trading provable
correctness for ease-of-use and programmer productivity. This begs the question of the
reliability of the tactic, since it’s not formally shown to always generate well-typed terms.
Debugging took place in two phases. First, type-checking the implementation of the
tactic itself, which was easy, as there were no deep proof obligations, only ML-like type-
checking. We note that our tactic, at 620 lines, (including whitespace and comments)
is the third largest Meta-F? program written to date. Second, type-checking the output
of the tactic. We did so by inspecting the generated definitions and type-checking them
like regular terms in the interactive mode, which quickly revealed the source of bugs.
We debugged the tactic on Curve25519, our most complex example; once debugged,
the tactic never generated ill-typed code and was used successfully by other co-authors.

In the years since we implemented this tactic, it has come to be used in numerous
places in HACL? and has been the workhorse of many verified algorithms. The tactic
now executes natively, leveraging the F? compiler’s ability to dynlink natively-compiled
tactics, similar to Coq’s native_compute. The running-time of the tactic itself is not
noticeable.

5.7.3 Streaming API

To evaluate the applicability of the streaming API, we compare lines of code (LoC) for
the F? source code and the final C code as a proxy for programmer effort. While not
ideal, this metric has been used by several other papers [127, 128, 233] and provides
a coarse estimate of the proof engineering effort. Our point of reference is a previous,
non-generic streaming API that previously operated atop the EverCrypt agile hash
layer.

Table 5.4 presents the evaluation. For the old streaming API, the proof-to-code
ratio was 1.11, i.e., each line of generated C code required more than one line of
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F? code. Capturing the block API and implementing the streaming API uses 1667
lines of F? code. The extra verification effort is quickly amortized across the 14
applications of the streaming API, which each requires a modest amount of proofs to
match the exact signature of the block API. Out of those, six were integrated into the
reference implementation of the Python programming language. Poly1305 and Blake2
were originally authored without bringing out the functional, fold-like nature of the
algorithms, which led to some glue code and proofs to meet the block API. Altogether,
we obtain a proof-to-code ratio of 0.51, which we interpret to coarsely mean a 2x
improvement in programmer productivity. We expect this number to further decrease,
as more applications of the streaming API follow.

For execution times, we present the verification time of the API itself, and the
verification time of each of the instances, including glue proofs. Compared to fully
verifying Blake2 (7.5 minutes), or Poly1305 (~14 minutes), the verification cost is
modest. Applying the streaming API to a type class argument incurs no verification
cost, so the extraction column measures the cost of partial evaluation and extraction to
the ML AST, which is negligible.

5.8 Related Work

Automating the generation of low-level code is a common theme among several software
verification projects. We now review several related efforts not discussed earlier in the
chapter.

A rich overview of the topic of proof engineering can be found in Ringer et al.’s
survey [224]. We however note that this survey focuses on techniques for verifying
large-scale proof developments without efficient, readable extraction being a concern.
Furthermore, it especially focuses on Interactive Theorem Provers, and leaves out of
scope program verifiers based on constraint solvers, which require a different set of
techniques to tame the solver’s complexity. In this regard, the present work explores a
complementary facet of the art of proof engineering.

Fiat Cryptography [192] relies on a combination of partial evaluation and certified
compilation phases to compile a generic description of a bignum arithmetic routine to
an efficient, low-level imperative language, which is then output as either C or assembly.
In this approach, the specifications are declarative, and do not impose any choice of
representation. Conversely, in HACL?, the decision is made by the programmer, who
manually refines a high-level mathematical specification into an implementation that
picks word sizes and representations. While the approach of Fiat Cryptography is
automated, it relies on fine-grained control of the compilation toolchain; for instance,
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a key compilation step is bounds inference, which picks integer widths to be used by
the rest of the compilation phases. By contrast, we do not customize the extraction
procedure of F?, nor extend KaRaMeL with dedicated phases. Another difference to
highlight is that FiatCrypto, to the best of our knowledge, focuses on the core bignum
subset of operations, and offers neither a high-level Curve25519 API, or other families
of algorithms. In our work, we operate at higher levels up the stack, tackling high-level
API transformers and complete algorithms, “in the large”.

Jasmin [350, 351] is a framework for developing high-speed, verified cryptographic
implementations. Jasmin provides a low-level DSL with features such as loops or
procedures, and has been used to verify a range of cryptographic algorithms. However
it lacks the higher-level abstraction features provided by our approach to author
generic, specializable implementations. Jasmin relies on verified compilation using Coq
to generate optimized assembly code semantically equivalent to code verified in the
Jasmin DSL. In contrast, the extraction procedure of F?, in line with several other
proof assistants, is trusted; this problem is orthogonal to our approach, and could be
addressed through advances in verified program extraction [323, 352].

Recent work by Pit-Claudel et al. [333, 334] proposes correct-by-construction
pipelines to generate efficient low-level implementations from non-deterministic func-
tional high-level specifications. The process is end-to-end verified as it relies on
Bedrock [353, 354]. In Pit-Claudel’s work, compilation and extraction are framed
as a backwards proof search and synthesis goal. Handling non-determinism has not
been done at scale with F?; however, the algorithms we study are fully deterministic.
Pit-Claudel’s approach is DSL-centric: the user is expected to augment the compiler
with new synthesis rules for each new flavor of specifications. In our work, we reuse
the existing extraction facility of F?, which we treat as a black box. We rely on many
whole-program compilation phases, such as the various compilation schemes for data
types, monomorphization and unused argument elimination; to the best of our knowl-
edge, Pit-Claudel’s toolchains do not support such whole-program transformations that
require non-local decisions.

Appel et al. [355] verify the equivalent of our streaming API applied to SHA2-256;
specifically, the version found within OpenSSL. This work is end-to-end verified, by
virtue of using VST [356]. In its current form, the development is geared towards SHA-
256 only, and supports neither higher-order, modular reasoning, nor code generation
“for free” for multiple algorithms.

Lammich [335] uses an approach very similar to Pit-Claudel et.al., and refines
Isabelle/HOL specifications down to efficient, Imperative/HOL code. The code is then
extracted to a functional programming language, e.g. OCaml or SML, and compiled
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by an off-the-shelf compiler. This means that unlike Pit-Claudel, Lammich still relies
on a built-in extraction facility. This is a promising approach, and seems applicable to
the original HACL? code: it would be worthwhile to try to refine HACL? specifications
automatically to the Low? code. In the case of the various “functors” we describe,
however, we suspect “explaining” how to refine the specification into the exact API we
want would require the same amount of work as writing the functors directly.

In Haskell, the cryptonite library [357] offers an abstract hash interface using type
classes, along with several instances of this type class. The high-level idea is the same:
unifying various hash algorithms under a single interface. One natural advantage of our
work is that it comes with proofs, meaning that clients can be verified on top of HACL?

and shown to not misuse our APIs, before being also extracted to C. Perhaps more to
the point, our approach also has unique constraints: no matter how efficient functional
code may be, we insist on generating idiomatic C code: adoption by Firefox, Linux and
others comes at that cost. The code produced by our toolchain cannot afford to have
run-time dictionaries or function pointers. We therefore must partially evaluate away
the abstractions before C code generation.

Cogent [240] is a purely functional language with linear types that was used to
implement verified file systems [241]. By restricting the language’s expressiveness,
its authors simplify reasoning, and allow compiling Cogent programs to efficient C
code by means of a self-certifying compiler. Though Cogent provides features such as
polymorphic, higher-order functions, as well as the possibility of parameterizing code
with abstract definitions, it doesn’t provide the equivalent of 0-cost functors like our
approach. Our approach seems a natural fit to verify applications such as file systems,
provided the effect system we use is adequate. In this regard, it might be interesting
to use our rewriting mechanism with programs written in Steel [236], a separation
logic framework implemented for F? and which also supports extraction to C through
KaRaMeL; doing so would only require minor modifications of our rewriting procedure.

5.9 Conclusion

Software verification is entering new territory, with proof developments now routinely
topping 100,000 lines of code. And when it comes to verifying security-critical code,
the resulting software artifact has to be not only verified, but also low-level and fast.
For those projects, there is a growing need of foundational proof development design
patterns.

In this chapter, we designed, implemented and evaluated a new methodology that
relies on elaborator reflection to add a custom pre-compilation stage. That early stage
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interprets user-provided annotations (in effect, a DSL) and rewrites the code accordingly.
We showed that this provides significant gains in terms of proof engineer productivity,
allowing not only existing algorithms in HACL? to be rewritten in a form that tames
previous complexity, but also allows us to explore and analyze new algorithms, such as
the streaming API.

The benefits of our approach are very concrete: we were able to implement, verify,
and instantiate the streaming API in a modular way, which resulted in code that
was high-quality enough to pass muster with the Python maintainers, and should be
included in the upcoming Python 3.12.
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1 type block_index = {
2 km: key_management; (* km = Runtime \/ km = Erased *)

3 state: State.state_index; (* State spec *)

4 key: Key.state_index; (* Key spec *)

5 (* Some lengths used in the specs *)

6 max_input: x:nat { 0 < x /\ x < pow2 64 };
7 out_len: x:U32.t { U32.v x > 0 };
8 block_len: x:U32.t { U32.v x > 0 };
9

10 (* The one-shot specification *)

11 spec_s: key.t -> input:seq U8.t{length input <= max_input}) ->
12 out:seq U8.t{length out == U32.v out_len};
13

14 (* The block specification *)

15 init_s: key.t -> state.t;
16 update_multi_s: state.t -> prevlen:nat ->
17 s:seq U8.t{length s % U32.v block_len = 0}) -> state.t;
18 update_last_s: state.t -> prevlen:nat ->
19 s:seq U8.t{length s <= U32.v block_len} -> state.t;
20 finish_s: key.t -> state.t -> s:seq U8.t { length s = U32.v out_len };
21

22 (* update_multi_s respects the fold law... *)

23 update_multi_is_a_fold: ... -> Lemma ...;
24 (* ...and central correctness lemma of a block algorithm *)

25 spec_is_incremental: key:key.t ->
26 input:seq U8.t{length input <= max_input} -> Lemma (
27 let bs, l = split_at_last (U32.v block_len) input in
28 let hash0 = update_multi_s (init_s key) 0 bs in
29 let hash1 = finish_s key (update_last_s hash0 (length bs) l) in
30 hash1 == spec_s key input); }
31

32 [@Specialize]
33 assume val update_multi (bi:block_index) (s:bi.state.s) (prevlen:U64.t)
34 (blocks:buffer U8.t { length blocks % U32.v bi.block_len = 0 })
35 (len: U32.t { U32.v len = length blocks /\ ... (* omitted *) })
36 ST unit (requires ... (* omitted *) ) (ensures (fun h0 _ h1 ->
37 modifies (bi.state.footprint h0 s) h0 h1 /\
38 bi.state.footprint h0 s == bi.state.footprint h1 s /\
39 bi.state.invariant h1 s /\
40 bi.state.v i h1 s ==
41 bi.update_multi_s (bi.state.v i h0 s) (U64.v prevlen)
42 (as_seq h0 blocks) /\ ...));
43 ... (* Omitted: rest of the block API, e.g. init, finish... *)

Listing 13: The block API
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Figure 5.3: Cost of Verifying the Tactic-Rewritten Call Graphs

Algorithm Verif. time
Chacha20 6s (+27%)
Poly1305 43s (+17%)
ChaCha-Poly 19s (+34%)
Curve25519 74s (+88%)
HPKE 231s (+132%)

Figure 5.4: Quantifying the Impact of the Streaming API

F? LoC C LoC verif. extract.
EverCrypt hashing (old) 848 798
API and interfaces 1667 0 103.5s 0
EverCrypt hashing (new) 128 929 20.3s 8.3s
MD5, SHA1, SHA2 (⇥4) 231 1577 39.4s 13.6s
Poly1305 (⇥3) 452 998 55.7s 6.4s
Blake2s (⇥2), Blake2b (⇥2) 874 4761 115.1s 9.2s
Total 4200 8265 334s 47.6s



Chapter 6

Incremental Proofs in Dafny with
Module-Based Induction

The Noise? and zero-cost functors projects, by being implemented in F?, crucially rely on
SMT automation. If this class of automation proved powerful to handle many reasonings
and in particular arithmetic reasonings, it also suffers from several issues such as proof
instabilities. The ability to use SMT solvers for different classes of programs, like
compilers, is also unclear. In this third project, we tackle the problem of verifying parts
of the Dafny compiler inside of Dafny itself, and design novel techniques to improve the
proof stability by relying on Dafny’s modules to implement induction principles.

6.1 Introduction

Writing a mechanized proof generally implies working in an incremental manner, by first
laying out a simplified version of the problem under study and shaping the proofs, then
gradually complexifying the definitions while updating those proofs. For instance, to
verify a compiler one might start with a simplified version of the source AST that omits
the complex cases, before adding those cases one by one. Highly automated theorem
provers like Dafny make the first iterations pleasant as the prover manages to discharge
most of the then-simple proof obligations. Unfortunately, as the problem gets more
complicated, automated proofs can become unstable or simply break. Worse, most
automated theorem provers only offer limited tools to debug unstable or failing proofs:
unlike an ITP like Coq, an ATP like Dafny does not show a goal or a proof context
along with each failure. In an attempt to recover the benefits of ITPs, we demonstrate
in this short chapter how to structure inductive proofs in Dafny by using modules to
encode Coq-like induction principles. We report on our experience of iterating through
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1 // Dafny

2 datatype LL<T> =
3 | Nil | Cons(h: T, t: LL<T>)
4

5 function App<T>(
6 l0: LL<T>, l1: LL<T>) : LL<T>
7 { match l0
8 case Nil => l1
9 case Cons(h, t) =>

10 Cons(h, App(t, l1)) }
11

12 lemma Assoc<T>(l0: LL<T>,
13 l1: LL<T>, l2: LL<T>
14 ) ensures App(App(l0, l1), l2)
15 == App(l0, App(l1, l2))
16 { match l0
17 case Nil => // Nothing to do

18 case Cons(h, t) =>
19 Assoc(t, l1, l2); }

(* Coq *)

Inductive ll T :=
| Nil | Cons : T -> ll T -> ll T.

Fixpoint app {T} (l0 l1: ll T) : ll T :=
match l0 with
| Nil => l1
| Cons h t => Cons h (app t l1)
end.

Lemma assoc {T} (l0 l1 l2 : ll T) :
app (app l0 l1) l2 = app l0 (app l1 l2).

Proof.
induction l0 as [|hd tl IH]; intros; simpl.
+ reflexivity. (* Nil case *)

+ rewrite IH. reflexivity. (* Cons case *)

Qed.

Listing 14: Proof that List Concatenation is Associative (Left: Dafny, Right: Coq).

the proofs of a prototype of a self-hosted compiler for the Dafny language, and on the
benefits in terms of proof maintainability and stability.

Contributions. The work in this chapter comes from a collaboration with Clément
Pit-Claudel, that we presented at the Dafny Workshop in 2014 [358]. With regards
to the self-hosted compiler which is mentioned throughout the chapter [359], Clément
wrote a first version of the semantics of (a subset of) Dafny, which I then expanded and
used to implement and verify several compilation passes. During this process I came up
with the idea of using modules to encode inductive proofs in Dafny.

6.2 Inductive Proofs in Dafny and Coq

Comparing Dafny and Coq. Let us start with a minimal example: a proof that
list concatenation is associative, in Dafny and Coq (listing 14). In Dafny, we define
the concatenation as App (“append”) and do the proof by induction in Assoc. Dafny
automatically discharges the Nil case. In the Cons case, we use a recursive call (line 19)
to invoke the induction hypothesis.

In Coq, we use induction l0 as ... to invoke the induction principle that Coq
automatically derived from the definition of ll, which, after a call to simpl to simplify
the context, gives us two goals:

T : Type, l1 : ll T, l2 : ll T ` app l1 l2 = app l1 l2

for the Nil case, and:
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. . . , IH : 8l1 l2. app (app t l1) l2 = app t (app l1 l2)

` Cons h (app (app t l1) l2) = Cons h (app t (app l1 l2))

for the Cons case.
From there, it is easy to determine how to invoke the induction hypothesis (rewrite IH,

with unification filling in the arguments) in the Cons case. We finally conclude both
goals by reflexivity. In contrast, in Dafny: 1. we have to write the inductive structure
by hand; 2. we are not shown goals; 3. we cannot use unification to instantiate the
induction hypothesis, and must instead specify arguments to the recursive call. This
isn’t an issue when doing simple proofs, but is a significant burden when working on
more realistic cases. In particular, Dafny doesn’t provide much information to the user
when a proof breaks, while Coq displays the precise goal on which it got stuck. As a
result, the user often spends a significant amount of time debugging broken proofs to
understand which proof obligation failed, before actually spending time on fixing it.

Another issue is proof duplication. We notice that in practice most proofs about
lists follow the same structure: we perform an induction, and in the Cons case call
the induction hypothesis on the tail of the list; writing the inductive structure and
specifying the arguments to the recursive call by hand leads to a lot of boilerplate in
Dafny.

One final issue is proof evolution. In Coq, adding an additional constructor, maybe
Snoc : ll T ! T ! ll T, would lead to a failed proof with a new unsolved goal clearly
identifying what is missing. Dafny, in contrast, would first try to derive a contradiction
in the missing case (Snoc), and having failed to do that would report the missing
case (without showing a proof context). This contradiction proof can be costly: in
extreme cases, e.g. with many other constructors, it can fail to complete and we may
simply get an unspecific proof failure for the whole lemma, without further details. A
solution might be to forbid the users from omitting cases in a match; this is however not
desirable in practice, as programmers often use this convenience to avoid considering
many irrelevant cases in their proofs.

Using an induction principle in Dafny. We propose to structure the proofs with an
induction principle, by which we factor out the structure of the proofs and decompose the
various proof obligations, leading to less mundane work, a better debugging experience
and finer control over verification times. The use of induction principles is inspired by
provers like Coq which generate them for free; in the case of Dafny we have to write
them by hand. 1

1The induction principle we introduce here is actually simplistic for the purpose of clarity. For more
realistic versions, see Section 6.3.
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abstract module ListInduction {
predicate P<T>(ls: LL<T>)

lemma Induct_Nil<T>() ensures P<T>(Nil)

lemma Induct_Cons<T>(h: T, t: LL<T>)
requires P(t)
ensures P(Cons(h, t))

lemma Induct<T>(ls: LL<T>) ensures P(ls) {
match ls
case Nil => Induct_Nil<T>();
case Cons(h, t) => Induct(t); Induct_Cons(h, t); } }

module AppAssoc refines ListInduction {
predicate P ... { forall l1, l2 :: App(App(ls, l1), l2) == App(ls, App(l1, l2)) }

// "..." is Dafny syntax to reuse the

// signatures defined in the module

// ListInduction

lemma Induct_Nil ... {}
lemma Induct_Cons ... {} }

Listing 15: Proof of Associativity of List Concatenation with a Module-Based Induction
Principle.

We proceed by defining an induction principle for lists in the form of an abstract
module (ListInduction in listing 15). We declare the target property that we wish to
prove by induction through an abstract predicate P, together with the rules it must
satisfy: Induct_Nil states that P must be true for the empty list, and Induct_Cons
states that it must be true on non-empty lists provided it its true on their tails. Those
abstract declarations act like holes: the corresponding proofs are to be filled later.
Given those assumptions, we can prove by induction once and for all that P always
holds (lemma Induct).

This abstract module provides a generic structure for all the inductive proofs for
lists; in particular we can use it to prove associativity. We do so by defining a module
named AppAssoc which refines ListInduction. This time, we have to fill in the blanks:
we state the associativity property by providing a definition for P, and write proofs for
Induct_Nil and Induct_Cons; as Dafny manages to discharge the proofs automatically,
they are empty. Note that because the proofs are empty, Dafny actually allows us to
omit those lemmas, which is in practice very useful when there are a lot of trivial cases;
Dafny would however report an error if it fails to prove on its own a lemma that we
omitted. The theorem we want is finally given by AppAssoc.Induct, that we can use
without additional work. Using an induction principle for this simple example might
seem overkill; we illustrate the benefits on more realistic examples in the next sections.



6.3 Applying the Induction Principle on Mini-Dafny 131

6.3 Applying the Induction Principle on Mini-Dafny

6.3.1 Verifying IsPure

We explained how to define and use an induction principle on the simplistic example of
list concatenation. Let us now illustrate how it can be adapted to a more interesting
example, namely verifying micro-passes of a compiler for a simple language based
on Dafny that we call mini-Dafny. We make the whole development available in the
companion artifact [360]. We adapted this language from a work-in-progress verified
compiler for the Dafny programming language [359]. The problem of verifying multiple
compilation passes, which involved repeatedly proving inductive theorems involving
the same, big function (InterpStmt is around 1000 LoCs in [359]) provided the initial
motivation for the present work.

1 function InterpStmt(s: Stmt, ctx: Context):
2 Result<(int, Context)> {
3 match s {
4 case Bind(bvar, bval, body) =>
5 // ':-' below is a monadic bind

6 var (bvalv, ctx1) :- InterpStmt(bval, ctx);
7 var ctx2 := ctx1[bvar := bvalv];
8 var (bodyv, ctx3) :- InterpStmt(body, ctx2);
9 var ctx4 := ctx1 + (ctx3 - {bvar});

10 Success((bodyv, ctx4))
11

12 case Seq(s1, s2) =>
13 var (_, ctx1) :- InterpStmt(s1, ctx);
14 InterpStmt(s2, ctx1)
15

16 ... /* Omitted */ } }

We define the semantics of mini-Dafny with an interpreter (InterpStmt). For
simplicity, values are integers, and we omit all side effects but in-place updates to
local variables. InterpStmt takes as inputs a statement and a context, which is a
map from variable names to integer values, and returns the result of evaluating the
statement together with an updated context. In order to evaluate a variable dec-
laration (Bind case), we first evaluate the bound value bval (line 6), where :− is
a bind for the error monad, meaning the statement var x :− y; st is desugared to
match y { case Fail e => Fail e; case Return(x) => st; }. We then augment the context
with a new binding for bvar (line 7), evaluate the body in this new context (line 8),
and finally reset the value bound to bvar (if this binding exists in the initial context),
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so that the bound variable doesn’t escape its scope (line 9). Specifically, at line 9,
ctx3 − {bvar} is the map ctx3 where we remove the binding for bvar (if it exists), and
ctx1 + (ctx3 − {bvar}) is ctx1 extended with the bindings from ctx3 − {bvar} (if a
binding exists in both maps, we take the one from ctx3 − {bvar}). Finally, evaluating
a sequence of statements (Seq case) simply requires chaining contexts between the
statements of the sequence.

Given those semantics for mini-Dafny, we can verify a first micro-pass which rewrites
statements of the form 0 ∗ s or s ∗ 0 to 0, provided s is pure (i.e., it doesn’t update
any local variable); note that in mini-Dafny we mix statements and expressions. We
first define a predicate IsPure(s: Stmt, locals: set<string>) which states that statement
s doesn’t update variables but the ones listed in locals; we use locals to track variables
bound in declarations and whose updates won’t escape their scope. In particular,
if IsPure(s, {}) is true then s doesn’t have side effects. Looking at the definition, a
declaration (Bind) is pure if the bound statement bval only updates variables from locals,
and if its body only updates variables from the set {bvar} + locals. An in-place update
(Assign) is pure if it updates the value of a variable from locals. A sequence is pure if it
is made of pure statements. We omit the other, straightforward cases. For instance,
x := 3 is not pure, while var x := 0; x := 3 is pure because x is locally bound and won’t
escape its scope.

predicate IsPure(
s: Stmt, locals: set<string> := {}) {
match s
case Bind(bvar: Var, bval: Stmt, body: Stmt) =>

IsPure(bval, locals) && IsPure(body, {bvar} + locals)
case Assign(avar, aval) =>

avar in locals && IsPure(aval, locals)
case Seq(s1, s2) =>

IsPure(s1, locals) && IsPure(s2, locals)
... /* Omitted */ }

Now suppose we want to prove the correctness of IsPure, meaning that if a statement
is pure in the sense of IsPure then evaluating it leaves the context unchanged. As the
proof proceeds by induction over mini-Dafny statements 2 we introduce an induction
principle to reason over the mini-Dafny AST.

predicate P(st: S, s: Stmt)
predicate P_Step(st: S, s: Stmt, st1: S, v: V)
... // Some definitions omitted

2mini-Dafny doesn’t have loops, which would require induction over semantic derivations.
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lemma P_Step_Sound(st: S, s: Stmt, st1: S, v: V)
requires P_Step(st, s, st1, v)
ensures P(st, s)

lemma InductSeq_Step(
st: S, s: Stmt, s1: Stmt, s2: Stmt, st1: S, v1: V)
requires s == Seq(s1, s2)
requires P_Step(st, s1, st1, v1)
requires P(st1, s2)
ensures P(st, s)

... // Omitted: lemmas for the various inductive cases

Defining an induction principle for mini-Dafny requires a bit more work than for lists.
We require an abstract P(st: S, s: Stmt) predicate which states the target property for
statement s in state st. Importantly, we use an abstract type S for the states, because the
user might want to carry more information than just a single context. We do the same
for values, for similar reasons. We also require an auxiliary predicate P_Step to mention
intermediary steps of execution. The P_Step(ctx: S, s: Stmt, ctx1: S, v: int) predicate
states that evaluating s starting in state ctx succeeds and yields a new state ctx1 and
a value v; as we need to link it to P somehow, we also require that P_Step implies P
through the (abstract) lemma P_Step_Sound. We then decompose the inductive cases
into precise lemmas. For instance, InductSeq_Step states that, if the target property
holds for the execution of s1 starting in st, and also holds for the execution of s2 starting
in the state resulting from executing s1, then it holds for the whole sequence s1; s2,
starting in st. We finally show how to use this induction principle for the proof of
correctness of IsPure.
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1 datatype S =
2 S(locals: set<string>, ctx: Context)
3 type V = int
4

5 predicate SameCtxs(locals, ctx, ctx1) {
6 && ctx1.Keys == ctx.Keys
7 && ctx1 - locals == ctx - locals }
8

9 predicate P_Step(st, s, st1, v) {
10 && IsPure(s, st.locals)
11 && st.ctx.Keys >= st.locals
12 && InterpStmt(s, st.ctx) == Success((v, st1.ctx))
13 && st1.locals == st.locals
14 && SameCtxs(st.locals, st.ctx, st1.ctx) }
15

16 predicate P(st, s) {
17 IsPure(s, st.locals) ==>
18 st.ctx.Keys >= st.locals ==>
19 match InterpStmt(s, st.ctx) {
20 case Failure _ => true
21 case Success((_, ctx1)) =>
22 SameCtxs(st.locals, st.ctx, ctx1)
23 } }

We define the state as a pair of a set of variable names and a context. The predicate
P states that if s only updates variables from st.locals according to IsPure (line 17), and
if the context has bindings for the variables listed in st.locals (line 18), then evaluating s
starting in st.ctx yields (if it succeeds) a context which is unchanged but on the variables
listed in st.locals (line 22). We need the condition st.ctx.Keys � st.locals to ensure that
InterpStmt won’t fail while accessing a variable listed in st.locals because it is undefined.
The predicate P_Step is similar to P except for the condition that executing s in st must
succeed, yielding v st1 (line 12), and for the conjunctions which replace implications
(this is slightly technical: suffices to say that P_Step must unconditionally state that
the execution succeeds; we omit the rule which enforces this). Overall, instantiating
the induction principle for IsPure is straightforward, and all the proofs go through
automatically.

6.3.2 Experience Using the Induction Principle

We now report on our experience of using the induction principle in practice. We applied
the induction principle to several proofs, namely: 1. IsPure; 2. EliminateMulZero: a
micro-pass which simplifies statements of the form 0 ∗ s or s ∗ 0 to 0, provided s is pure;
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3. UnchangedVar: a predicate which states that a specific variable is left unchanged by
an statement.

We made several changes to the mini-Dafny AST in order to evaluate the cost of
updating the proofs: 1. we updated Seq to contain an arbitrary number of statements
(Seq(Stmt, Stmt)! Seq(seq<Stmt>)). 2. we updated Bind (and Assign) to allow multiple
declarations (assignments, respectively) at once.

We initially introduced UnchangedVar to reason about variable inlining when working
on the more mature version of the compiler [359]. Though simple in appearance, this
property is actually subtle and led to expensive proofs; we thus resorted to using a
module-based induction principle. In practice, this approach allowed us to dramatically
decrease the time we spent on maintaining the proofs.

Factoring out proofs. By using an induction principle we don’t have to write the
inductive structure of the proofs by hand, and even get automatic variable introduction;
after we paid the cost of writing this principle, we thus recover similar advantages to
using a tactic like induction in Coq. Instantiating the induction principle by providing
definitions for the abstract declarations (e.g., P) requires some boilerplate, especially
as we introduced more abstract definitions with each language extension. In practice,
however, this work was straightforward, especially as mistakes done when instantiating
the induction principle were easy to debug and fix, and in particular easier to fix than
the version of the proofs which did not use an induction principle. We also noticed that
our instantiations shared similarities: we might leverage this fact to reduce the work
even further in the future.

Easy debugging. Because we wrote the rules required by the induction principle so
that they are small and precise, we were able to quickly pinpoint the reasons behind a
failure whenever a proof broke. In particular, Dafny would tell us which specific lemma
(and thus inductive case) failed. This allowed us to easily fix proofs when updating the
language, and proved useful when sketching the proofs in the first place, as we could
quickly iterate by adjusting the way we stated the properties we targeted to prove until
we got them right.

Smooth iterations. Updating the mini-Dafny language required us to update the
induction principle several times, either by modifying specific rule statements, or by
adding more rules and abstract definitions. As a result, we could focus on specific
changes while updating the proofs, and the fact that the rules are small and simple
made them more stable. In practice, updating the mini-Dafny language only required us
to provide definitions for the new declarations we introduced in the induction principle,
and to add one assertion at one location in the proof of VarUnchanged, to guide the
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SMT solver in its search.

6.4 Related Work

Previous work explored the design of proofs robust to changes, typically by introduc-
ing abstractions and interfaces [206, 361–363]. Some work explored the problem of
automating inductive proofs altogether by means of heuristics [364–369]; in our case,
we target properties which are usually too complex to be fully automated. Other work
explored the problem of writing usable inversion theorems but for ITPs like Coq, for
instance to control the size of the generated proof terms [370, 371]. An obvious way
of overcoming the limitations described in Section 6.2 is to extend ATPs with tactics,
as done in [218, 372, 373]. In the context of the present work extending the Dafny
prover was however not an option, but it would be interesting to investigate how our
approach compares with using tactics in a tool which supports both (like F? or Why3).
Interestingly, if the use of heavy automation has been promoted a lot to stabilize proofs
when using ITPs [231, 374–377], much less work went into the problem of stabilizing
proofs which already relied on a high level of automation. We can however mention
attempts to stabilize the proof search itself [378] or preserve VC transformations and
proof attempts [379]. Related to the problem of proof maintenance, some recent work
explored the problem of proof repair [380, 381], but in the context of tactic-based proof
assistants like Coq and not in highly automated theorem provers like Dafny. Finally, it
is worth noting that other works tackled the problem of studying language semantics in
an ATP [382–384]. We however note that none of those targeted the verification of a
multi-pass compiler for a realistic language, which on our side provided the original
motivation for introducing our encodings of induction principles [359].

6.5 Conclusion

We demonstrated how to encode an induction principle in Dafny by means of an abstract
module. By applying this induction principle to case studies taken from iterations over
the proofs of correctness of a compiler for the mini-Dafny language, we showed that our
technique has clear benefits to help the user factor out and maintain proofs. In effect, by
structuring inductive proofs we relieve the user from mundane work spent on structuring
those proofs, and allow them to focus instead of their core. By decomposing inductive
proof obligations into small and precise lemmas, we also make it easy to pinpoint the
reason behind proof failures. As future work, we are planning to investigate how to
automate the process of generating induction principles, as is done in ITPs like Coq.
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Chapter 7

Introduction

The Noise?, zero-cost functors and Dafny-in-Dafny projects we presented in the previous
chapters allowed us to push frameworks like Low? to their extreme limits; scaling
program verification further would require a new generation of tools. By leveraging
the practical experience we gained through those projects, we thus decided to work
on the creation of a new toolchain which targets Rust programs, Aeneas. The
Aeneas framework crucially leverages the Rust type system to generate pure models
of programs and their semantics, which allows drastically simplifying reasoning about
memory, and takes advantage of the custom, extensible automation made possible by
the meta-programming languages of interactive theorem provers.

The Rust programming language continues to rise in popularity. Rust has by now
become the darling of developers, voted the most admired language for the 8th year in
a row [385]; a favorite of governments, who promote safe languages in the context of
cybersecurity [386]; an industry bet, wherein large corporations are actively migrating
to Rust [387]; and an active topic in the programming languages research community.

Two research directions have emerged over the past few years. First, many tools
now set out to verify Rust programs and prove properties about their behavior, e.g.,
show that a Rust program matches its specification. But to confidently reason about
Rust programs, one needs a solid semantic foundation to build upon. This is the second
research direction, namely, understanding the semantics of Rust itself, clarifying the
language specification, and showing the soundness of Rust’s type system.

For Rust verification, we find tools such as Creusot [244], Prusti [388], Verus [389],
or hax [390]. All of those leverage one key insight: the strong ownership discipline
enforced by the Rust type system makes verification easier. For Creusot and Verus, this
observation turns into a first-order logical encoding of Rust programs that can then be
discharged to an SMT solver. For Prusti, the Rust discipline guides the application of
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separation logic rules in the underlying Viper framework [391]. And for hax, restricting
programs to a pure value-passing subset of Rust allows writing an almost identity-like
translation to backends such as F? [75] or ProVerif [392].

For Rust semantics, RustBelt [393] aims to prove the soundness of Rust’s type
system using a minimalistic model called �Rust, whose operational semantics is defined
by compilation to a core language. The MIRI project [394] aims to provide a reference
operational semantics of Rust, even in the presence of unsafe code. Stacked [395] and
Tree Borrows [396] aim to clarify the aliasing contract between the programmer and
the Rust compiler.

At the intersection of these two axes is RustHornBelt [397], which aims to prove that
the RustHorn [243] logical encoding of Rust programs (as used in Creusot) is sound
with regards to the semantics of �Rust, and consequently, that properties proven thanks
to the logical encoding hold for the original program.

We propose a new approach to understanding and verifying Rust programs. At
the heart of our methodology is a lightweight functional translation of Rust programs.
We eschew the complexity of connecting to a separation-logic based backend [393], or
relying on prophecy variables to produce a logical encoding [243, 397]. Instead, we
synthesize a pure, functional, executable equivalent of the original Rust program, thus
producing a lambda-term that does not rely on memory or special constructs. Our
translation handles shared, mutable, two-phase and re-borrows, and thus accounts for a
very large fraction of typical Rust programs. We call the conceptual framework, as well
as the companion tool, Aeneas.

The key point of this work is that we give a functional semantics, and thus a pure
translation, to the subset of Rust we consider. Concretely, we define LLBC, the Low-
Level Borrow Calculus, to model that subset. Then, we give it an operational semantics
that is functional in nature. We do not rely on memory, addresses or pointer arithmetic;
rather, we map variables to values, and track aliasing in a very fine-grained manner,
allowing us to handle delicate patterns such as reborrows or two-phase borrows. We
claim that our operational semantics captures the essence of borrowing; that is, it does
not simply apply the rules dictated by Rust’s lifetime discipline. Rather, it establishes
what is allowed with regards to ownership in the presence of moves, borrows and copies.
As such, our semantics can account not only for the current borrow-checker’s behavior,
but also for its future evolutions, such as Polonius [398].

We then tweak our semantics to abstract the aliasing graph in the presence of
function calls; to do so, we use the type of functions as summaries, resulting in LLBC#,
the symbolic semantics of LLBC. In effect, this symbolic semantics defines a borrow-
checker for LLBC programs, that is, if we successfully execute all the functions in a
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program by using the symbolic semantics, then this program is safe to execute.

Our functional translation then simply consumes the execution traces of the symbolic
semantics to construct a pure, executable program that is functionally equivalent to
the source Rust. To overcome the key difficulty of terminating a borrow, we rely on a
technical innovation called backward functions, which obviates the need for prophecy
variables (as in RustHorn). We wish to emphasize that our functional translation is
completely generic. While we demonstrate it by printing our pure programs in Lean
syntax, many other options are possible, and we have successfully implemented backends
for F?, Coq and HOL4.

Finally, we set out to formalize the fact that LLBC# instead defines a borrow-checker
for LLBC, and introduce new proof techniques to do so. First, we establish that LLBC,
despite using some mildly exotic features, is a reasonable model of execution and really
does connect to a traditional heap-and-addresses model of execution. Second, we show
that the symbolic semantics of LLBC correctly approximates its concrete semantics,
and thus that successful executions in the symbolic semantics guarantee the soundness
of concrete executions – in short, that the symbolic interpreter acts as a borrow checker.

Structure of the Following Chapters. The following chapters are organized as
follows. We first give a primer of Aeneas’s functional translation in Chapter 8. The
translation relies on a symbolic evaluation, which itself requires introducing a way of
tracking the borrow graph of a program while abstracting away the heap. We solve the
latter by introducing LLBC in Chapter 9, a semantics for safe Rust, before tweaking this
semantics to introduce the symbolic semantics for LLBC (LLBC#) in Chapter 10. We
prove the soundness of the symbolic semantics in Chapter 11, through a theorem which
states that a program which is successfully evaluated following the symbolic semantics
is memory safe, and its evaluation following the semantics of LLBC is in bisimulation
with an evaluation using a more standard semantics which explicitly models the heap
through a CompCert-like memory model. Building on this soudness theorem, we extend
the symbolic semantics in Chapter 12 with a join operation which allows us to support
loops. In order not to overwhelm the reader with technical details, we only present
our proof methodology and the important theorems, and leave the detailed proofs with
the necessary intermediate lemmas in appendix. We finally introduce the (trusted)
translation, which is based on a symbolic execution, in Chapter 13, and evaluate the
framework in Chapter 14.

Contributions. The work presented here is based on two papers presented at ICFP
in 2022 and 2024 [399, 400]. I personally came up with the idea of using forward and
backward functions to write pure models of Rust programs, then designed the semantics
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of LLBC and LLBC# to make this translation possible. In particular, I came up with
the idea of using the trace of a symbolic execution to generate a functional translation, of
modelling loans and borrows as first-class values, and of introducing region abstractions
to abstract away lifetime constraints. I wrote most of the implementation of the first
version of Charon and Aeneas, which was presented with the 2022 paper. Sidney
Congard did a preliminary exploration of a potential join operation for LLBC#; I
completely reworked those ideas, resulting in the join operation we present here, as
well as the fixed-point computations that allow us to support loops. I wrote the first
version of the extension which introduced support for loops, which was later modified
by Aymeric Fromherz. With regards to the soundness of LLBC#, I personally came
up with the idea of using hybrid semantics and defining relations between different
languages as sequences of elementary transformations, and wrote the proofs.

Merging the two papers required modifications. The first paper introduced the
initial versions of LLBC and LLBC#, and the translation. The second paper revisited
those semantics to establish a soundness result our symbolic borrow-checking, and
expanded LLBC# to support control-flow joins and loops. In the following chapters, I
present the most recent version of the semantics, which required updating the rules for
the translation (Chapter 13). The section about the backends is novel (Section 14.3).



Chapter 8

Aeneas and its Functional Translation,
by Example

Before jumping into the various facets of our formalism, we keep an eye on the prize, and
immediately showcase how Aeneas translates Rust programs to pure equivalents. In
this section, and for the remainder of the thesis, we use Lean syntax for our functional
translation; it greatly resembles OCaml and other ML languages, and as such should
be familiar to the reader. A brief note about terminology: we adopt the view of
Matsakis [401], and refer to regions, emphasizing that a region encompasses a set of
borrows and loans at a given program point. The Rust compiler and documentation,
however, refer to lifetimes, which conveys the idea of a syntactic bracket, and a specific
implementation technique to enforce soundness. In this work, whenever we talk about
Rust specifically, we use “lifetime”; whenever we emphasize our semantic view of
ownership, we use “region”.

8.1 Mutable Borrows, Functionally

To warm up, we consider an example that, albeit small, showcases many of Rust’s
features, including its ownership mechanism. In the Rust program below, incr increments
a reference, and test_incr acts as a representative caller of the function.

1 fn incr(x: &mut i32) {
2 *x = *x + 1;
3 }
4

5 fn test_incr() {
6 let mut y = 0i32;
7 incr(&mut y);

143
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8 assert!(y == 1);
9 }

The incr function operates by reference; that is, it receives the address of a 32-bit
signed integer x, as indicated by the & (reference) type. In addition, incr is allowed
to modify the contents at address x, because the reference is of the mut (mutable)
kind, which permits memory modification. Finally, the Rust type system enforces that
mutable references have a unique owner: the definition of incr type-checks, meaning
that the function not only guarantees it does not duplicate ownership of x, but also can
rely on the fact that no one else owns x.

In test_incr, we allocate a mutable value (let mut) on the stack; upon calling incr,
we take a mutable reference (&mut) to y. Statically, y becomes unavailable as long as
&mut y is active. In Rust parlance, y is mutably borrowed and its ownership has been
transferred to the mutable reference. To type-check the call, the type-checker performs a
lifetime analysis: the incr function has type (&↵mut i32) ! (), and the &mut y borrow
has type &�mut i32; both ↵ and � are lifetime variables.

For now, suffices to say that the type-checker ascertains that the lifetime � of
the mutable borrow satisfies the lifetime annotation ↵ in the type of the callee, and
deems the call valid. Immediately after the call, Rust terminates the region �, in
effect relinquishing ownership of the mutable reference &�mut y so as to make y usable
again inside test_incr. This in turn allows the assert to type-check, and thus the
whole program. Undoubtedly, this is a very minimalistic program; yet, there are two
properties of interest that we may want to establish already. The obvious one: the
assertion always succeeds. More subtly, doing so requires us to prove an additional
property, namely that the addition at line 2 does not overflow.

The key insight of Aeneas is that even though the program manipulates references
and borrows, none of this is informative when it comes to reasoning about the program.
More precisely: x and y are uniquely owned, meaning that there are no stray aliases
through which x or y may be modified; in other words, to understand what happens
to y, it suffices to track what happens to &mut y, and therefore to x. Feeding this
program to Aeneas generates the following translation, where + is syntactic sugar for
an Aeneas primitive that captures the semantics of error-on-overflow in Rust.

1 def incr (x : I32): Result I32 :=
2 x + 1#i32 -- evaluates to �fail� in case of overflow

3

4 def test_incr : Result Unit := do
5 let y <- incr x -- monadic bind

6 massert (y = 1#i32) -- monadic assert
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7

8 #assert (test_incr = ok ())

This program is semantically equivalent to the original Rust code, but does not rely on
the memory: we have leveraged the precise ownership discipline of Rust to generate a
functional, pure version of the program. In hindsight, the usage of references in Rust
was merely an implementation detail, which is why incr becomes a simple (possibly-
overflowing) addition. Should the call to incr (line 7) succeed, its result is bound to y
(line 5); the assert simply becomes a boolean test that may generate a failure in the
error monad.

For the purposes of unit-testing, Aeneas can insert an additional assertion for
properly annotated test functions of type unit! unit; the prover shows instantly that
our test always succeeds. (In Lean, we execute this assertion directly on the normalizer;
Aeneas produces an executable translation, not a logical encoding.) In the remainder
of this section, we use  , Lean’s bind operator in the error monad. Other supported
backends like F?, Coq and HOL4 also provide this notation.

8.2 Returning a Mutable Borrow and the Use of Back-
ward Functions

Rust programs, however, rarely admit such immediate translations. To see why, consider
the following example, where the choose function returns a borrow, as indicated by its
return type &↵mut.

1 fn choose<'a, T>(b: bool, x: &'a mut T, y: &'a mut T) -> &'a mut T {
2 if b { return x; } else { return y; }
3 }
4

5 fn test_choose() {
6 let mut x = 0i32;
7 let mut y = 0i32;
8 let z = choose(true, &mut x, &mut y);
9 *z = *z + 1;

10 assert!(*z == 1);
11 assert!(x == 1);
12 assert!(y == 0);
13 }

The choose function is polymorphic over type T and lifetime ↵; the lifetime annotation
captures the expectation that both x and y be in the same region. At call site, x and y
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are borrowed (line 8): they become unusable, and give birth to two intermediary values
&mut x and &mut y of type &↵mut i32. The value returned by choose also lives in
region ↵, i.e., z also has type &↵mut i32. The usage of z (lines 8-10) is valid because the
region ↵ still exists; the Rust type-checker infers that region ↵ ought to be terminated
after line 10, which ends the borrows and therefore allows the caller to regain full
ownership of x and y, so that the asserts at lines 11-12 are well-formed.

At first glance, it appears we can translate choose to an obvious conditional. But if
we reason about the semantics of choose from the caller’s perspective, it turns out that
the intuitive translation is not sufficient to capture what happens, e.g., the fact that
y is updated while x is being left unchanged and that we observe at lines 11 and 12.
To solve this issue we observe that at call site, choose is an opaque, separate function,
meaning the caller cannot reason about its precise definition – all that is available is the
function type. This type, however, contains precise region information, which one can
use to summarize its behavior. When performing the function call, the ownership of x
and y is transferred to region ↵ in exchange for z; symmetrically, when the lifetime ↵

terminates, z is relinquished to region ↵ in exchange for regaining ownership of x and y.
The former operation flows forward ; the latter flows backward. Using a separation-logic
oriented analogy: borrows and regions encode a magic wand that is introduced in a
function call and eliminated when the corresponding region terminates.

Our point is: both function call and region termination are semantically meaningful.
With the choose example, Aeneas emits a forward function which itself returns a
backward continuation. The forward function is used to model the function call at line 8,
while the backward continuation is used to propagate changes back into x and y when
lifetime ↵ terminates.

1 def choose {T : Type} (b : Bool) (x : T) (y : T) :
2 Result (T × (T ! T × T)) :=
3 if b
4 then ok (x, fun z => (ret, y))
5 else ok (y, fun z => (x, ret))
6

7 let test_choose : Result Unit := do
8 let (z, choose_back) <- choose true 0#i32 0#i32;
9 let z1 <- z + 1#i32

10 massert (z1 = 1#i32) -- monadic assert

11 let (x, y) := choose_back z1
12 massert (x = 1#i32)
13 massert (y = 0#i32)
14 ok ()
15
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16 #assert (test_choose = ok ())

The call to choose becomes a call to the forward function choose (line 8); we bind the
result of the addition (provided no overflow occurs) to z (line 9); then, per the rules
of Rust’s type-checker, region ↵ terminates which compels us to call the backward
function choose_back. The intuitive effect of calling choose_back is as follows: we
relinquish z, which was in region ↵; doing so, we propagate any updates that may have
been performed through z onto the variables whose ownership was transferred to ↵

in the first place, namely x and y. This bidirectional approach is akin to lenses [402],
except we propagate the output back to possibly-many inputs; in this case, z is a view
over either x or y, and the backward function reflects the update to z onto the original
variables. Thus, both variables are re-bound (line 11), before chaining the two asserts
(lines 12 and 13).

From the caller’s perspective, the computational content of choose is unknown; but
the signature of choose reveals the effect it may have onto its inputs x and y, which
in turns allows us to derive the type of the backward and forward functions from the
signature of choose itself. The result is a modular, functional translation that does not
rely on any sort of cross-function inlining or whole-program analysis. To synthesize the
backward function, it suffices to invert the direction of assignments; in one case, z flows
to x and y remains unchanged; the other case is symmetrical.

8.3 Functions with no Output Borrows

Let us now revisit to the example of the incr function. We presented it as a Rust
function which doesn’t require the use of backward functions in the generated model;
it actually does. The translation performed by Aeneas is generic in the type of the
function, and the emitted model always has one backward function per region present
in the signature. In the case of incr<↵>(x: &mut i32), the translation should return a
value of type Unit (for the output of incr), together with a backward function for the
lifetime ↵. As incr doesn’t return any mutable borrow for ↵, contrary to choose, this
backward function doesn’t actually consume any inputs; as such it is not a function but
a value of type i32. As a consequence, the translation of incr should have the output
type Result (Unit ⇥ I32), and this is actually the pure model initially generated by
Aeneas.

def incr (x : I32): Result (Unit × I32) := do
let x1 <- x + 1#i32
ok ((), x1)
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Finally, because we are concerned with generating idiomatic code, we implemented
several micro-passes to improve the quality of the translation before emitting it. Those
include a unit elimination pass which simplifies the type Result (Unit ⇥ I32), yielding
the pure model which is actually output by Aeneas and that we showed at the beginning
of the section.

8.4 Recursion and Data Structures

It might not be immediately obvious that this translation technique scales up beyond
toy examples; we now crank up the complexity and show how Aeneas can handle a
wide variety of idioms while still delivering on the original promise of a lightweight
functional translation. Our next example is list_nth, which allows taking a mutable
reference to the n-th element of a list, mutating it, and regaining ownership of the list.

enum List<T> {
Cons(T, Box<List<T>>),
Nil,

}

fn list_nth_mut<'a, T>(l: &'a mut List<T>, i: usize) -> &'a mut T {
match l {

Nil => { panic!() }
Cons(x, tl) => {

if i == 0 { x }
else { list_nth_mut(tl, i - 1) }

}
}

}

fn sum(l: & List<i32>) -> i32 {
match l {

Nil => { return 0; }
Cons (x, tl) => { return *x + sum(tl); }

}
}

fn test_nth() {
let mut l = Cons (1, Box::new(Cons (2, Box::new(Nil))));
let x = list_nth_mut(&mut l, 1);
*x = *x + 1;
assert!(sum(&l) == 4);

}
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This example relies on several new concepts. Parametric data type declarations (line 1)
resemble those in any functional programming language such as OCaml or SML. The
Box type denotes a heap-allocated, uniquely-owned piece of data. Without the Box
indirection, List would describe a type of infinite size and would be rejected. Immutable
(or shared) borrows (line 16) do not sport a mut keyword; they do not permit mutation,
but the programmer may create infinitely many of them. Only when all shared borrows
have been relinquished does full ownership return to the borrowed value.

The complete translation is as follows:

1 inductive List (T : Type) :=
2 | Cons : T -> List T -> List T
3 | Nil : List T
4

5 def list_nth_mut {T : Type} (l : List T) (i : Usize) :
6 Result (T × (T -> List T)) :=
7 match l with
8 | Cons x tl =>
9 if i = 0#usize

10 then ok (x, fun x' => Cons x' tl)
11 else do
12 let i1 <- i - 1#usize
13 let (v, list_nth_mut_back) <- list_nth_mut tl i1
14 ok (v, fun v' => Cons x (list_nth_mut_back v'))
15 | Nil => fail
16

17 def sum (l : list_t i32) : Result I32 :=
18 match l with
19 | Cons x tl => do
20 let i <- sum tl
21 x + i
22 | Nil => ok 0#i32
23

24 def test_nth : Result Unit := do
25 let l := Cons (1, Cons (2, Nil))
26 let (x, list_nth_mut_back) <- list_nth_mut l 1
27 let x1 <- x + 1#i32
28 let l1 := list_nth_mut_back x1
29 let i <- sum l1
30 massert (not (i = 4))
31

32 #assert (test_nth_fwd = Return ())

We first focus on the caller’s point of view. Continuing with the lens analogy, we
focus on (or “get”) the n-th element of the list via a call to list_nth_mut (line 26);
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modify the element (line 27); then close (or “put” back) the lens, and propagate the
modification back to the list via a call to list_nth_mut_back (line 28). The backward
continuation is of particular interest. In the Nil case, it simply updates the list to replace
the head (x) with its new value (x', at line 10). In the Cons case, it updates the tail of
the list by using the backward continuation returned by the recursive call at line 13,
and reconstructs the complete list by consing the (unchanged) head value (line 14)1.

8.5 Loops

The example above implements list_nth_mut as a recursive function; a more idiomatic
version would implement it with a loop instead, as shown below.

fn list_nth_mut<'a, T>(mut l: &'a mut List<T>, i: usize) -> &'a mut T {
loop {

match l {
Nil => { panic!() }
Cons(x, tl) => {

if i == 0 { return x; }
else {

l = tl;
} } } } }

The translation is as follows:

def list_nth_mut_loop {T : Type} (l : List T) (i : U32) :
Result (T × (T ! List T)) :=
match l with
| Cons x tl =>

if i = 0#u32
then

ok (x, fun x' => Cons x' tl)
else do

let i1 ← i - 1#u32
let (v, back) ← list_nth_mut_loop tl i1
ok (v, fun v' => Cons x (back v'))

| Nil => fail

1If the list_nth_mut function is structurally terminating and is thus accepted with no difficulty
by a theorem prover like Lean, one may wonder how we handle definitions which do not have this
property. In the case of the Lean backend, we implemented a custom elaboration triggered by the
attribute divergent, and which leverages the fact that our functions live in an error monad to encode
them by using a custom fixed-point operator. As this custom elaboration also proves and registers on
the fly the unfolding lemmas expected by the user, this method allows us to define (potentially) partial
functions in a lightweight manner. In practice, the user can perform their proofs without even being
aware of the existence of this custom elaboration; we elide the precise details of this encoding here.
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def list_nth_mut {T : Type} (l : List T) (i : U32) :
Result (T × (T -> (List T))) :=
list_nth_mut_loop l i

This time, Aeneas introduces an auxiliary, recursive definition list_nth_mut_loop
to model the body of the loop. The function list_nth_mut then simply calls this
function, doing nothing else because its body is only made of this loop. The model of
the loop itself is actually exactly the same as the translation of the recursive version
of list_nth_mut, which is perhaps not surprising given the fact that this function is
tail-call recursive.

Traits. We end up this tour of Aeneas’ translation by looking at traits, which
implement a typeclass system for Rust.

1 trait Counter {
2 fn incr<'a>(&'a mut self) -> usize;
3 }
4

5 impl Counter for usize {
6 fn incr(&mut self) -> usize {
7 let x = *self;
8 *self += 1;
9 x

10 }
11 }
12

13 fn use_counter<'a, T: Counter>(cnt: &'a mut T) -> usize {
14 cnt.incr()
15 }

In the snippet of code above, Counter defines a trait which requires a single method
incr. We implement an instance of Counter for the type usize on lines 5-11, which
simply increments self and returns its former value. Finally, we define a polymorphic
function use_counter which takes as input a mutable borrow to an element of a type T
which must implement the trait Counter, as indicated by T : Counter. It then uses this
trait obligation to call the incr method with cnt at line 14. We show the result of the
translation below.

1 structure Counter (Self : Type) where
2 incr : Self -> Result (Usize × Self)
3

4 def CounterUsize.incr (self : Usize) : Result (Usize × Usize) := do
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5 let self1 <- self + 1#usize
6 Result.ok (self, self1)
7

8 def CounterUsize : Counter Usize := {
9 incr := CounterUsize.incr

10 }
11

12 def use_counter {T : Type} (CounterInst : Counter T) (cnt : T) :
13 Result (Usize × T) :=
14 CounterInst.incr cnt

The trait Counter is modeled as a structure containing one field, for the method
incr; we resort to using structures rather than typeclasses because we have no way
of ensuring that the typeclass inference implemented by the backend will yield the
same result as the trait resolution performed by Rust. Here, we crucially leverage the
modular nature of the translation: the type of incr in Rust gives us all the information
we need; in particular, in the pure world, we can model incr with a function of type
Self !Result (Usize ⇥ Self). The translation of the instance of Counter for usize is
straightforward (lines 4-10). Finally, the translation of use_counter is a function which
explicitly receives an input of type Counter T, which it then uses to model the call to
the incr method.



Chapter 9

An Ownership-Centric Semantics for
Rust

Before explaining the functional translation above, we must first define our input
language and its operational semantics. We first present a series of short snippets of
Low-Level Borrow Calculus (LLBC) code, and show in comments how our execution
environments model the effect of each statement. LLBC is a cleaned up version Rust’s
Mid-level Intermediate Representation (MIR), one of the intermediate languages used
by the Rust compiler; in particular, LLBC uses high-level syntax constructs such as
if then else, loops, breaks and continues instead of MIR’s gotos. As such, LLBC can
be seen as a desugared version of Rust’s syntax AST, where for instance copies and
moves are explicit. We then present the semantics of LLBC in a systematic manner
in Section 9.2.

9.1 The Low-Level Borrow Calculus - Examples

9.1.1 Mutable Borrows

We consider the snippet of code below. After line 1, x points to 0, which we write
x 7! 0. At line 2, px mutably borrows x. As we mentioned earlier, a mutable borrow
grants exclusive ownership of a value, and renders the borrowed value unusable for the
duration of the borrow. We reflect this fact in our execution environment as follows:
x is marked as “loaned-out”, in a mutable fashion, and px is known to be a mutable
borrow. Furthermore, ownership of the borrowed value now rests with px, so the value
within the mutable borrow is 0. Finally, we need to record that px is a borrow of x:
we issue a fresh loan identifier ` that ties x and px together. The same operation is
repeated at line 3. Value 0 is now held by ppx, and px, too, becomes “loaned out”.
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1 let mut x = 0; // x 7! 0

2 let mut px = &mut x; // x 7! loan
m `, px 7! borrow

m ` 0

3 let ppx = &mut px; // x 7! loan
m `, px 7! loan

m `0, ppx 7! borrow
m `0 (borrowm ` 0)

Our environments thus precisely track ownership; doing so, they capture the aliasing
graph in an exact fashion. Another point about our style: this representation allows us
to adopt a focused view of the borrowed value (e.g. 0), solely through its owner (e.g.
ppx), without worrying about following indirections to other variables. We believe this
approach is unique to our semantics; it has, in our experience, greatly simplified our
reasoning and is crucial to making the symbolic semantics and the functional translation
work(Chapter 13).

We remark that our style departs from Stacked Borrows [395], where the modified
value remains with x. We also note that our formalism cannot account for unsafe
blocks; allowing unfettered aliasing would lead to potential cycles, which we cannot
represent. This is an intentional design choice for us: we circumscribe the problem
space in order to achieve an intuitive, natural semantics and a lightweight functional
translation. Aeneas shines on safe Rust programs, and can be complemented by more
advanced tools such as RustBelt for unsafe parts.

9.1.2 Shared borrows

Shared borrows behave more like traditional pointers. Multiple shared borrows may
be created for the same value; each of them grants read-only access to the underlying
value. The owner also retains a read-only access to the borrowed value; regaining the
full ownership requires terminating all of the borrows. In the example below, the value
(0, 1) is borrowed in a shared fashion, at line 2. This time, the value remains with x;
but taking an immutable reference to x still requires book-keeping. We issue a new
loan `, and record that px1 is now a shared borrow associated to loan `; to understand
which value px1 points to, we simply look up in the environment who is the owner of `,
and read the associated value. Repeated shared borrows are permitted: at line 3, we
create a new shared borrow of x; as x is already borrowed we do not need to update its
value and simply reuse the loan identifier `. At line 4, we anticipate on our internal
syntax, where moves and copies are explicit, and copy the first component of x. Values
that are loaned immutably, like x, can still be read; in the resulting environment, y
points to a copy of the first component, and bears no relationship whatsoever to x.
Finally, at line 5, we reborrow (through px1) the first component of the pair only. First,
to dereference px1, we perform a lookup and find that x owns `. Then, we perform
book-keeping and update the value loaned by x, so as to reflect that its first component
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has been loaned out, introducing a fresh loan identifier `0 at the same time.

1 let x = (0, 1); // x 7! (0, 1)

2 let px1 = &x; // x 7! loan
s ` (0, 1), px1 7! borrow

s `

3 let px2 = &x; // x 7! loan
s ` (0, 1), px1 7! borrow

s `, px2 7! borrow
s `

4 let y = copy x.0; // x 7! loan
s ` (0, 1), px1 7! borrow

s `, px2 7! borrow
s `, y 7! 0

5 let z = &(*px1.0); // x 7! loan
s ` ((loans `0 0), 1), px1 7! ..., px2 7! ..., y 7! 0, z 7! borrow

s `0

In our presentation, shared borrows behave like pointers, and every one of them is
statically accounted for via the loan identifier attached to the borrowed value. The
reader might find this design choice surprising: indeed, in Rust, shared borrows behave
like immutable values and we ought to be able to treat them as such. Recall, however,
that one of our key design goals is to give a semantic explanation of borrows; as such,
our precise tracking of shared borrows allows us to know precisely when all aliases have
been relinquished, and full ownership of the borrowed value has been regained, as we
shall see in Section 9.1.4.

Finally, we reiterate our remark that our formalism allows keeping track of the
aliasing graph in a precise fashion; the discipline of Rust bans cycles, meaning that
the aliasing graph is always a tree. This style of representation resembles Mezzo [403],
where loan identifiers are akin to singleton types, and entries in the environment are
akin to permissions.

9.1.3 Reborrows

We now consider a particularly tricky example accepted by the Rust compiler. While
the complexity seems at first gratuitous, it turns out that the pattern of borrowing a
dereference (i.e., &mut (*px)) is extremely common in Rust. The reason is subtle: in
the post-desugaring MIR internal Rust representation, moves and copies are explicit,
meaning function calls of the form f(move px) abound. Such function calls consume
their argument, and render the user-declared reference px unusable past the function
call. To offer a better user experience, Rust automatically “reborrows” the content
pointed to by px, and rewrites the call into f(move (&mut (*px))) at desugaring-time.
Thus, only the intermediary value is “lost” to the function call; relying on its lifetime
analysis, the Rust compiler concludes that the user-declared reference px remains valid
past the function call, hence making the programmer’s life easier.

Even more twisted, reborrowing (part of) oneself, as done at line 3, is also a very
common pattern, in particular when visiting recursive data-structures. When recursively
diving into a list l, in the Cons case, we need to update l so that it points to its tail; in
practice this is tantamount to reborrowing oneself. Capturing the semantics of such an
update must be done with great care, in order to preserve precise aliasing information.
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We propose an example that shows how to reborrow oneself. Rust accepts this
program; we now explain with our semantics why it is sound. In the example below, at
line 2, the environment offers no surprises. Justifying the write at line 3 requires care.
We borrow ⇤px, which modifies px to point to borrow

m `0 0, and returns loan
m `0; the

value about to be overwritten is stored in a fresh, anonymous variable _, and loan
m `0

gets written to px.

1 let mut x = 0; // x 7! 0

2 let mut px = &mut x; // x 7! loan
m `, px 7! borrow

m ` 0

3 px = &mut (*px); // x 7! loan
m `, _ 7! borrow

m ` (loanm `0), px 7! borrow
m ` 00

4 // After ending `0:

5 // x 7! loan
m `, _ 7! borrow

m ` 0, px 7! ?
6 // After ending `:

7 assert!(x==0); // x 7! 0, _ 7! ?, px 7! ?

Saving the old value is crucial for line 7. For the assertion, we need to regain full
ownership of x. To do so, we first terminate `0. This reorganizes the environment,
with two consequences. First, px becomes unusable, which we write px 7! ?. Second,
the anonymous value, which we had judiciously kept in the environment, becomes
borrow

m ` 0; this yields the environment at line 5. We reorganize the environment again,
to terminate `; the effect is similar, and results in x 7! 0, i.e. full ownership of x; we
get the final environment of line 7. This example illustrates a key characteristic of our
approach, which is that we reorganize borrows in a lazy fashion, and don’t terminate a
borrow until we need to get the borrowed value back.

9.1.4 Lazy Borrow Semantics - An Illegal Borrow

We offer an final example which leverages our reorganization rules; furthermore, the
example illustrates how our semantics reaches the same conclusion as rustc, though
by different means, on a borrowing error. At line 2, a borrow is introduced, which
results in a fresh loan `. To make progress, we terminate borrow ` at line 4. Line 5
then type-checks, with a fresh borrow `0. Then, we error out at line 7: px1 has been
terminated, and we cannot dereference ?.

The Rust compiler proceeds differently, and implements an analysis which requires
computing borrow constraints for an entire function body. The compiler notices that
lifetime ` must go on until line 7 (because of the assert), which prevents a new borrow
from being issued at line 5. Rust thus ascribes the error to an earlier location than we
do, that is, line 5. We remark that the Rust behavior is semantically equivalent to ours;
however, our lazy approach which terminates borrows only as needed has the advantage
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that evaluation can proceed in a purely forward fashion, without requiring a non-local
analysis or backtracking. This on-demand approach is similar to Stacked Borrows.

1 let mut x = 0; // x 7! 0

2 let px1 = &mut x; // x 7! loan
m `, px1 7! borrow

m ` 0

3 // After ending `:

4 // x 7! 0, px1 7! ?
5 let px2 = &mut x; // aeneas: x 7! loan

m `0, px1 7! ?, px2 7! borrow
m `0 0

6 // rustc: error: cannot borrow �px1� as mutable more than once at a time

7 assert!(*px1 == 0); // aeneas: error, attempt to deference unusable variable px1

9.1.5 Two-Phase Borrows

We finally review two-phase borrows, which are introduced by the Rust compiler at
desugaring time. A two-phase borrow starts as a shared borrow in a “reservation phase”,
and later gets activated into a full mutable borrow. Reserved borrows enable a variety of
very common idioms [404] without resorting to more advanced desugarings. Below, we
create a two-phase borrow at line 3. From the point of view of the lender, a two-phase
borrow acts as a shared borrow; the value of x, which is already immutably borrowed,
remains unchanged. However, px2 maps to the reserved borrow borrow

r `. At line 4
we evaluate the assertion as before. However, at line 9 we need to use the two-phase
borrow to perform an in-place update. We thus reorganize the environment by ending
the shared borrow ` contained by px1 at line 6. There now only remains a single borrow
pointing to x, the reserved borrow of px2, that we can promote to a mutable borrow at
line 8. This allows us to evaluate the in-place update at line 9.

1 let mut x = 0; // x 7! 0

2 let px1 = &x; // x 7! loan
s ` 0, px1 7! borrow

s `

3 let px2 = &two-phase x; // x 7! loan
s ` 0, px1 7! borrow

s `, px2 7! borrow
r `

4 assert!(*px1 == 0); // x 7! loan
s ` 0, px1 7! borrow

s `, px2 7! borrow
r `

5 // After ending the shared borrow of px1:

6 // x 7! loan
s ` 0, px1 7! ?, px2 7! borrow

r `

7 // After promoting the reserved borrow of px2:

8 // x 7! loan
m `, px1 7! ?, px2 7! borrow

m ` 0

9 *px2 = 1; // x 7! loan
m `, px1 7! ?, px2 7! borrow

m ` 1

9.2 The Low-Level Borrow Calculus - Rules

We now formally introduce and define our semantics of Rust programs. We start with
the Low-Level Borrow Calculus (“LLBC”, Figure 9.1), our source language. LLBC is in
large part inspired by MIR, Rust’s post-desugaring internal representation, notably: all
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⌧ ::= type

bool | uint32 | int32 | ... literal types

&⇢
mut ⌧ | &⇢ ⌧ mutable, immutable (shared) borrow

↵,�, ... type variables

⌧0 + ⌧1 sum

(~⌧) pair (len(~⌧) = 2) or unit (len(~⌧) = 0)
Box ⌧ boxed type

µX. ⌧ equirecursive type

s ::= statement

; empty statement (nil)

s; s sequence (cons)

p := rv assignment

if op then s else s conditional

match pwith
����!
C ! s data type case analysis

free p free

return function exit

panic unrecoverable error

loop s loop

break i | continue i break, continue to an outer loop

p := f( ~op) function call

x variable

p ::=P [x] place

rv ::= assignable “r” values

op operand

&mut p | & p mutable, immutable (shared) borrow

&reserved p reserved (two-phase) borrow

!op | op+ op | op� op | ... operators

new op new

op ::= operand

move p ownership transfer

copy p scalar copy

true | false | ni32 | nu32 | ... literal constants

Left op | Right op sum constructor

( ~op) pair (len( ~op) = 2) or unit (len( ~op) = 0)

P ::= path

[.] base case

⇤P deref

P.f field selection

D ::= top-level declaration

fn f h~⇢, ~⌧i (~xarg : ~⌧) (~xlocal : ~⌧) (xret : ⌧) { s } function declaration

Figure 9.1: The Low-Level Borrow Calculus: Syntax
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local variables ~xlocal are bound at the beginning of the function declaration; returning
a value from a function amounts to writing into the special variable xret, followed by
return; all sub-expressions have been named so as to fit within MIR’s statement/r-
value/operand categories; and all variables within expressions have been desugared
to either a move, a copy or a borrow. However, and unlike MIR, LLBC retains some
high-level constructs: control-flow remains structured (LLBC statements are thus the
fusion of MIR’s statements and terminators); and case analysis on data types is exposed
via a limited form of (complete) pattern matching, as opposed to a low-level integer
switch on the tag. In order to make the proofs in the later sections simpler (Chapter 11),
we also restrict data types to sums and pairs; a more general presentation of the
formalism with regards to datatypes was initially introduced in [399]. We remark
that data types may match on a path only; this merely imposes that the scrutinee be
let-bound before examining it, something that MIR does internally. We also use pure
expressions to allocate data types, rather than the progressive (mutable) initialization
pattern used by MIR; and we see structures as data types equipped with a single
constructor, for conciseness. Finally, we do not formalize traits in our semantics, though
the implementation supports them. Staying close to MIR is a design choice in line with
other Rust-related works [395]; it allows for fewer, simpler rules, and a more precise
description of what happens from the point of view of ownership.

At the heart of LLBC is a notion of place, i.e. the combination of a base variable
(e.g. x) and a series of field offsets and indirections known as a path (e.g. ∗_.f). A place
is akin to the notion of “lvalue” in, e.g., C. Assigning or returning from a function can
only be done into a place. The grammar of rvalues and operands (Rust’s limited form
of expression) is very explicit, in that every use of a variable is performed through a
copy, a move, or a borrow of a place.

9.3 A Structured Memory Model

Rust marries high-level concepts, such as ownership, a strong notion of value, and
data types, with low-level concepts such as moves and copies, paths through a base
address, and modifications at depth throughout the store. We propose a semantics that
operates exclusively in terms of values (that is, no memory addresses), yet still permits
fine-grained memory mutations as allowed by Rust.

Figure 9.2 presents our environments, which we write ⌦, and our values, which we
write v. We do not distinguish between states and environments, and use the two terms
interchangeably. The state maps variable names x to values v: we have no notion of
arbitrary memory addresses, or pointer arithmetic. Our values v are carefully crafted
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v ::= value

true | false | ni32 | nu32 | ... literal constants

Left v | Right v sum value

() unit

(v0, v1) pair

? bottom (invalid) value

loan
m ` mutable loan

borrow
m ` v mutable borrow

loan
s ` v shared loan

borrow
s ` shared borrow

borrow
r ` reserved borrow

r ::= result

() unit

return successful, possibly-early exit

panic unrecoverable error state

break i | continue i break, continue

id ::= environment binding identifier

x local variable identifier

_ anonymous identifier

⌦LLBC ::= { env : id �!
partial

v, stack : [[x]] } state

Figure 9.2: The Low-Level Borrow Calculus: Environments and Values

to model the semantics of borrows and ownership tracking in Rust; several of them
already appeared in our earlier examples.

The combination of places, environments and values allows us to define reads and
writes already. Reads and writes are defined in terms of our structured memory model:
we do not have any notion of memory address, but do have a notion of path combined
with a base “address” (variable) x, that is, a place; this permits reads and writes, at
depth, through references. We present the rules for reading (R-*) in Figure 9.3 and
writing (W-*) in Figure 9.4.

For reading, we write ` ⌦(p)
k) v, meaning reading from ⌦ at place p with capability

k produces v. The capability k 2 {mut, imm,mov} constrains the way we access the place,
and depends on the expression we evaluate; they are necessary mostly for writing, but we
use them also for the reading rules for consistency. We use imm when creating a shared
borrow or when copying a value (E-SharedBorrow, E-Copy), mut when creating a
mutable borrow (E-MutBorrow), and mov when moving a value (E-Move). We can
dereference a shared borrow only with capability imm (R-Deref-SharedBorrow): as
mov and mut both require a mutable access, we need to end the loan before. Similarly,
moving a value out of a borrow is not permitted: we can dive into a mutable borrow
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Read
p = P [x] ⌦(x) = v

⌦ ` P (v)
k) v0

` ⌦(p)
k) v0

R-Base

⌦ ` [.](v)
k) v

R-ProjSum-Left
⌦ ` P (v)

k) v0

⌦ ` P ((Left v).0)
k) v0

R-ProjSum-Right
⌦ ` P (v)

k) v0

⌦ ` P ((Right v).0)
k) v0

R-ProjPair-Left
⌦ ` P (v)

k) v0

⌦ ` P ((v, v1).0)
k) v0

R-ProjPair-Right
⌦ ` P (v)

k) v0

⌦ ` P ((v0, v).1)
k) v0

R-SharedLoan
P 6= [.] ⌦ ` P (v)

imm) v0

⌦ ` P (loans ` v)
imm) v0

R-Deref-Box
⌦ ` P (v)

k) v0

⌦ ` P (⇤(Box v) k) v0

R-Deref-SharedBorrow
loan

s ` v 2 ⌦

⌦ ` P (loans ` v)
imm) v0

⌦ ` P (⇤(borrows `))
imm) v0

R-Deref-MutBorrow
⌦ ` P (v)

imm,mut) v0

⌦ ` P (⇤(borrowm ` v))
imm,mut) v0

Figure 9.3: Read Rules (LLBC)

with capabilities imm and mut but not mov (R-Deref-MutBorrow).
Accessing a place requires looking up the “base pointer” (variable) x found in p

(Read), then deferring to an auxiliary judgment of the form ⌦ ` P (vx)
k) v, meaning

following path P into vx with capability k produces value v. We can follow path P as
long as the value vx is of the right shape (R-Deref-MutBorrow, R-ProjPair-Left,
R-ProjSum-Left, etc.). Dereferencing a mutable borrow simply requires diving into the
borrowed value, since the mutable borrow has an exclusive access to the value it points
to (R-Deref-MutBorrow). Conversely, reading from a shared borrow requires looking
up the owner of the loan to find the value being pointed to (R-Deref-SharedBorrow).

Rule R-Base is our base case: if we have reached the end of the path P , we simply
return the value found there. One subtlety occurs in the case of shared loans. Rule
R-SharedLoan permits reading from a value that is currently immutably borrowed,
which is allowed in Rust. However, we only do so if necessary; that is, if we must follow
further indirections in P (i.e., P 6= [.]). If there are no further indirections (i.e., P = [.]),
R-Base kicks in and returns a value of the form loan

s. This is intentional, and will
prove useful when creating shared borrows (E-SharedBorrow), as we shall see shortly.

For writing, we write ` ⌦[p v]
k) ⌦0, meaning assigning value v into ⌦ at place

p with capability k produces an updated environment ⌦0 (Write). As before, we
follow the structure of vx (Write), and defer to an auxiliary judgment of the form
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Write
p = P [x] ⌦(x) = v

⌦ ` P (v) w
k) (v0, ⌦0)

⌦00 = (⌦0(x) := v0)

` ⌦[p w]
k) ⌦00

W-Base

⌦ ` [.](v : ⌧) (w : ⌧)
k) (w, ⌦)

W-ProjSum-Left
⌦ ` P (v) w

k) (v0, ⌦0)

⌦ ` P ((Left v).0) w
k) (Left v0, ⌦0)

W-ProjSum-Right
⌦ ` P (v) w

k) v0 a ⌦0

⌦ ` P ((Right v).0) w
k) (Right v0, ⌦0)

W-ProjPair-Left
⌦ ` P (v) w

k) (v0, ⌦0)

⌦ ` P ((v, v1).0) w
k) ((v0, v1), ⌦

0)

W-ProjPair-Right
⌦ ` P (v) w

k) (v0, ⌦0)

⌦ ` P ((v0, v).1) w
k) ((v0, v

0), ⌦0)

W-SharedLoan
P 6= [.] ⌦ ` P (v) w

imm) (v0, ⌦0)

⌦ ` P (loans ` v) w
imm) (loans ` v0, ⌦0)

W-Deref-Box
⌦ ` P (v) w

k) (v0, ⌦0)

⌦ ` P (⇤(Box v)) w
k) (Box v0, ⌦0)

W-Deref-SharedBorrow
loan

s ` v 2 ⌦ ⌦ ` P (loans ` v) w
imm) (v0, ⌦0[loans ` v00]) ⌦00 = ⌦0[loans ` v0]

⌦ ` P (⇤(borrows `)) w
imm) (borrows `, ⌦00)

W-Deref-MutBorrow
⌦ ` P (v) w

imm,mut) (v0, ⌦0)

⌦ ` P (⇤(borrowm ` v)) w
imm,mut) (borrowm ` v0, ⌦0)

Figure 9.4: Write Rules (LLBC)
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⌦ ` P (vx) v
k) (v0x, ⌦

0), which from vx computes an updated value v0x where only the
sub-expression selected by P is updated with v, together with an updated environment
⌦0. We update x’s entry in the environment to map to the new value v0x, denoted
⌦[x 7! v0x] (Write). Importantly, the auxiliary judgement needs to compute both an
updated value and an updated environment, because following shared borrows might
require looking up and thus updating a value which is not the one under scrutinee. Also
note that the writing judgement is used to evaluate assignments (E-Assign) but also to
do the necessary book-keeping when, e.g., evaluating right-values. For instance, creating
a shared borrow requires using the writing judgement to update the environment
by inserting a shared loan at the proper place (E-SharedBorrow). As before, the
shape of P determines which rule applies: we may only dereference borrows or boxes
(W-Deref-SharedBorrow, W-Deref-MutBorrow, W-Deref-Box) and eventually
apply W-Base. We elide the remaining rules (tuples, sums, etc.).

9.4 Semantics of Ownership and Borrows

At the heart of our operational semantics is our treatment of borrows, which captures
ownership transfer.

9.4.1 Right-values

We now introduce the rules to evaluate rvalues in Figure 9.5, and describe in detail the
essential operations: moves, copies and borrows. Our rules start with E-, for evaluation
rules, and the indications LLBC only can be ignored for now.

When moving a value at place p (E-Move), we simply replace this value with ?. We
disallow moving: ?, already-borrowed values (no loans), or reserved borrows. We also
forbid moving through a dereference. The former prevents invalidating stray borrows;
simply said, if a value has non-terminated borrows, we cannot obtain full ownership of
it in order to perform the move. The latter replicates Rust’s constraint that no moves
are allowed under a borrow.

For copies (E-Copy), we rely on an auxiliary judgment of the form ` copy v = v0,
meaning copying v in produces v0. Copying a value produces the same value except
for shared loans, in which case we simply copy the shared value without perform-
ing any shared-loan tracking (Copy-SharedLoan); the ownership information that
regards the old value is irrelevant for the newly-copied value. The copy judgement
constrains the copyable values by omission: we allow copying, e.g., a shared borrow
(Copy-SharedBorrow), but disallow copying mutable or reserved borrows, mutably
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E-MutBorrow (LLBC only)

` ⌦(p)
mut) v

?, loans,m, borrowr 62 v ` fresh

` ⌦[p loan
m `]

mut) ⌦0

⌦ ` &mut p + (borrowm ` v, ⌦0)

E-SharedBorrow (LLBC only)

` ⌦(p)
imm) v ?, loanm , borrowr /2 v

` ⌦[p v0]
imm) ⌦0

v0 =

(
loan

s ` v00 if v = loan
s ` v00

loan
s ` v ` fresh otherwise

⌦ ` & p + (borrows `, ⌦0)

E-ReservedBorrow (LLBC only)

` ⌦(p)
mut) v ?, loanm , borrowr /2 v

` ⌦[p v0]
mut) ⌦0

v0 =

(
loan

s ` v00 if v = loan
s ` v00

loan
s ` v ` fresh otherwise

⌦ ` &reserved p + (borrowr `, ⌦0)

E-Move
` ⌦(p)

mov) v
?, loans,m, borrowr 62 v

` ⌦[p ?] mov) ⌦0

⌦ ` move p + (v, ⌦0)

E-Copy
` ⌦(p)

imm) v ` copy v = v0

⌦ ` copy p + (v0, ⌦)

E-Pair
⌦0 ` op0 + (v0, ⌦1)
⌦1 ` op1 + (v1, ⌦2)

⌦0 ` (op0, op1) + ((v0, v1), ⌦2)

E-Sum-Left
⌦ ` op + (v, ⌦0)

⌦ ` Left op + (Left v, ⌦0)

E-Sum-Right
⌦ ` op + v a ⌦0

⌦ ` Right op + (Right v, ⌦0)

Figure 9.5: LLBC: Rules to Evaluate Rvalues
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Copy-SharedBorrow

` copy borrow
s ` = borrow

s `

Copy-SharedLoan
` copy v = v0

` copy loan
s ` v = v0

Copy-Scalar
v literal value (boolean, integer, etc.)

` copy v = v

Copy-Sum
C = Left _ C = Right

` copy v = v0

` copyC v = C v0

Copy-Pair
` copy v0 = v00
` copy v1 = v01

` copy (v0, v1) = (v00, v
0
1)

Figure 9.6: LLBC: Rules to Evaluate Copy

loaned values, boxes or ?, as there are no corresponding rules.
For mutable borrows (E-MutBorrow), we disallow: borrowing already-borrowed

values (no loan
s,m); borrowing moved, uninitialized values (no ?) or reserved borrows;

and borrowing through a shared borrow, as constrained by the use the the mov capability
(R-Deref-SharedBorrow, R-Deref-MutBorrow). If these premises are satisfied, we
update the environment by marking p as loaned with identifier `. The borrow evaluates
to borrow

m ` v, which embodies exclusive access to value v thanks to the loan `.
For immutable borrows (E-SharedBorrow), we disallow moved or uninitialized

values (no ?) and reserved borrows, but rule out mutable loans only: it is always legal
in Rust to create another shared borrow from a value that has already been shared.
The borrow evaluates to borrow

s `, a borrow with a non-exclusive access granted by
`, where ` may have two origins. Either the value at place p is already immutably
borrowed for some loan `, in which case we simply reuse this identifier. Or this value is
not borrowed, in which case we update the environment to mark the value as shared by
inserting a fresh loan identifier `.

Reserved (two-phase) borrows (E-ReservedBorrow) work similarly to immutable
borrows, except that we use the capability mut instead of imm, as those borrows may
later be promoted to full mutable borrows.

9.4.2 Statements

We are now ready to define the semantics of statements (Figures 9.7, 9.8, 9.9).
We start with the assignments (E-Assign). We reduce rvs first, and remark that to

obtain v, the various rules for the rv syntactic category must succeed. For instance, if
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E-Reorg
⌦0 ,! ⌦1 ⌦1 ` s (r, ⌦2)

⌦0 ` s (r, ⌦2)

E-Return

⌦ ` return (return, ⌦)

E-Panic

⌦ ` panic (panic, ⌦)

E-Seq-Unit
⌦0 ` s0  ((), ⌦1)
⌦1 ` s1  (r, ⌦2)

⌦0 ` s0; s1  (r, ⌦2)

E-Break

⌦ ` break i (break i, ⌦)

E-Continue

⌦ ` continue i (continue i, ⌦)

E-Seq-Propagate
r 2 {return, panic, continue i, break i}

⌦ ` s0  (r, ⌦0)

⌦ ` s0; s1  (r, ⌦0)

E-IfThenElse-T
⌦ ` op + (v, ⌦0)

v = true _ v = loan
s ` true

⌦0 ` s1  (r, ⌦00)

⌦ ` if op then s1 else s2  (r, ⌦00)

E-IfThenElse-F
⌦ ` op + (v, ⌦0)

v = false _ v = loan
s ` false

⌦0 ` s2  (r, ⌦00)

⌦ ` if op then s1 else s2  (r, ⌦00)

E-Match
` ⌦(p)

imm) v v = C v0 _ v = loan
s ` (C v0)

(C = Left ^ s = s1) _ (C = Right ^ s = s2) ⌦ ` s (r, ⌦0)

⌦ ` (match pwith | Left ) s1 | Right ) s2) (r, ⌦0)

E-Assign (LLBC only)

⌦ ` rv + (v, ⌦0) ` ⌦0(p)
mut) vp vp has no outer loan

s,m

` ⌦0[p v]
mut) ⌦00 ⌦000 = ⌦00, _! vp

⌦ ` p := rv  ((), ⌦000)

E-Box-New (LLBC only)

⌦ ` op + (v, ⌦0)

⌦ ` new op (Box v, ⌦0)

E-Box-Free
` ⌦(p)

mov) Box v
⌦ ` ⇤p := ? + ((), ⌦0)

` ⌦[p ?] mov) ⌦00

⌦ ` free p ((), ⌦00)

Figure 9.7: LLBC: Rules to Evaluate Statements
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the right-hand side is a move , then E-Move enforces all of its preconditions. This means
E-Assign operates with ownership of v, which maps to our intuition for assignments
in the presence of ownership and, naturally, also corresponds to the Rust semantics.
What we do enforce, however, is that the value vp found at place p (on the left-hand
side of the assignment) should not have any outer loans, where an outer loan is a loan
value which is itself not inside a (mutable) borrow (for instance, (0, loan

m `) contains
an outer loan, while borrow

m ` (loanm `0) doesn’t). Overwriting a value that is currently
loaned-out would violate safety; we need to rule this out. More precisely: loans may
only appear behind borrow indirections; the value itself that is being overwritten may
not contain any loan. The assignment rule ends by writing v at the new place (using
Write). The rule for function call (E-Call) is identical, except that it deals with
binding the arguments, locals and return variable.

One key point of E-Assign is that we retain the old value in the environment ⌦00,
inside an anonymous variable _ not accessible to the user-written program. The only
purpose of this variable is to avoid discarding useful ownership knowledge; operationally,
this operation is ghost: the need to retain old values disappears once we explicitly
model the memory, as we will see in the proofs of soundness.

Going back to the reborrow example from Section 9.1.3, the possibility of writing
to a value containing an inner loan is what allows us to write into px at line 3. On
the other hand, the proof of soundness requires us to forbid overriding an outer loan.
Finally, storing the old value of px inside an anonymous variable is crucial to not lose
information about the borrow graph.

1 let mut x = 0; // x 7! 0

2 let mut px = &mut x; // x 7! loan
m `, px 7! borrow

m ` 0

3 px = &mut (*px); // x 7! loan
m `, _ 7! borrow

m ` (loanm `0), px 7! borrow
m ` 00

4 // After ending `0:

5 // x 7! loan
m `, _ 7! borrow

m ` 0, px 7! ?
6 // After ending `:

7 assert!(x==0); // x 7! 0, _ 7! ?, px 7! ?

Most of the remaining rules for statements are straightforward; we illustrate matches
and skip the rest. For matches (E-Match), we peek at the enum tag via imm) ; actual
transfer of ownership with moves and copies takes place in the suitable branch while
executing the statement s. We note that in general, our Read judgment may return
values of the form loan

s: this is useful e.g., to enforce that a value is not loaned out, as
in the premise of E-Move. For matches, however, we merely need to read the enum
tag; hence the case disjunction on the shape of the scrutinee in the premise. At this
point it is useful to note that the rules to create shared borrows were designed so that
it is not possible to stack an arbitrary number of shared loans.
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E-PushStack
⌦0 = { ⌦ with env = [���!x! v] ++⌦.env, stack = [�!x ] :: ⌦.stack }

` push_stack [���!x! v] ⌦ = ⌦0

E-PopStack
⌦0.stack = ([xret] ++ [�!xi ]) :: stack0

8 i,⌦i ` xi := ? + ((), ⌦i+1) ⌦m.env = [xret ! vret] ++ [�����!xi ! vi] ++ env0

?, loan, borrowr 62 vret ⌦end = { ⌦m with stack = stack
0, env = env

0 }
` pop_stack ⌦ = (vret, ⌦end)

E-Call �!⇢ fresh

fh~_, ~⌧i = fn h~_i (�!xi : �!⌧i ) (�!yj : �!⌧j ) (xret : ⌧) { s } 8 j 2 [0; m[,⌦j ` opj + (vj , ⌦j+1)

` push_stack

⇣
[xret ! ?] ++ [�����!xj ! vj ] ++ [

�����!
yk ! ?]

⌘
⌦m = ⌦begin

⌦begin ` body  (r, ⌦end)

(r0, ⌦f ) =

(
(panic, ⌦end) if r = panic

((), ⌦00) if r = return ^ ` pop_stack ⌦end = (v, ⌦0) ^ ⌦0 ` p := v  ((), ⌦00)

⌦0 ` p := fh~_, ~⌧i(�!opj) (r0, ⌦f )

Figure 9.8: LLBC: Rules to Evaluate Function Calls

E-Loop-Break-Inner
⌦ ` s (break 0, ⌦)

⌦ ` loop s ((), ⌦)

E-Loop-Break-Outer
⌦ ` s (break i+ 1, ⌦)

⌦ ` loop s (break i, ⌦)

E-Loop-Continue-Inner
⌦ ` s (continue 0, ⌦0)
⌦0 ` loop s (r, ⌦00)

⌦ ` loop s (r, ⌦00)

E-Loop-Continue-Outer
⌦ ` s (continue i+ 1, ⌦)

⌦ ` loop s (continue i, ⌦)

E-Loop-Panic
⌦ ` s (panic, ⌦)

⌦ ` loop s (panic, ⌦)

E-Loop-Return
⌦ ` s (return, ⌦)

⌦ ` loop s (return, ⌦)

Figure 9.9: LLBC: Additional Rules to Evaluate Loops
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Reorg-End-MutBorrow (LLBC only)

hole of ⌦[loanm `, .] not inside a borrowed value

loan
s,m 62 v

⌦[loanm `, borrowm ` v] ,! ⌦[v,?]

Reorg-End-SharedReservedBorrow (LLBC only)

hole of ⌦[.] not inside a borrowed value

loan
s ` v0 2 ⌦[v] v = borrow

s,r `

⌦[v] ,! ⌦[?]

Reorg-End-SharedLoan
borrow

s,r ` 62 ⌦[loans ` v]

⌦[loans ` v] ,! ⌦[v]

Reorg-Activate-Reserved (LLBC only)

loan, borrowr /2 v
hole of ⌦[., borrowr `] not inside a shared value

` /2 ⌦[., .], v

⌦[loans ` v, borrowr `] ,!
⌦[loanm `, borrowm ` v]

Reorg-Seq
⌦0 ,! ⌦1 ⌦2 ,! ⌦2

⌦0 ,! ⌦2

Reorg-None

⌦ ,! ⌦

Figure 9.10: LLBC: Reorganization Rules

9.5 Reorganizing Environments and Terminating Bor-
rows

We now present the final conceptual portion of our operational semantics: reorganizing
the environment, which we used in our earlier examples to terminate borrows. We
present rules in a declarative style, to highlight the semantics of Rust as opposed to the
implementation of borrow-checking. A consequence of our declarative approach is that
we do not need to follow Rust’s behavior to the letter; rather, in the implementation,
we reorganize borrows in a lazy fashion, and don’t terminate a borrow unless we need
to get the borrowed value back. Concretely, our rules allow reorganization before every
statement (E-Reorg). We claim that this captures a general semantics of borrows; we
substantiate that claim by showing, in Chapter 14, how our semantics can validate a
Rust program rejected by the current Rust borrow checker but accepted by Polonius,
an ongoing rewrite of the borrow checker to allow for a larger class of Rust programs to
be accepted.

We define reorganizing via a set of rewriting rules that operate on the environment
⌦ (Figure 9.10). Since these rules are syntactic in nature, we rely on value contexts
V [v] and environment contexts ⌦[v], rather than our earlier semantic notions of reads,



170 An Ownership-Centric Semantics for Rust

writes and ghost updates. We omit administrative rules for re-ordering environments
at will. Our judgments are of the form ⌦ ,! ⌦0, meaning ⌦ may be reorganized into
⌦0. We indulge in some syntax overload; whenever used on the left-hand side of ,!, we
understand ⌦[x 7! v] to pattern-match on ⌦ to select a mapping. This considerably
simplifies notation.

Our rules either render a value unusable (?), or strengthen it (borrowm, in the
case of reserved borrows) For these reasons, we generally demand full ownership of
the value in V [.] (or ⌦[.]); this is the reason behind the premises of the shape “hole
of ⌦[.] not inside a borrowed value”. The hole of ⌦[.] is not inside a borrowed value
if ⌦[.] is not of the shape ⌦[.] = ⌦0[borrowm ` (V [.])] or ⌦[.] = ⌦0[loans ` (V [.])] (for
some ⌦0[.], V [.] and `). For instance, Reorg-End-MutBorrow states that we can end
a mutable borrow which is not inside a mutable borrow or a shared loan; i.e., if it
is not itself borrowed. Similarly, the hole of ⌦[.] is not inside a shared value if ⌦[.]
is not of the shape ⌦[.] = ⌦0[loans `V [.]] (for some ⌦0[.], V [.] and `). We use this in
Reorg-Activate-Reserved to forbid activating a reserved borrow if its corresponding
loan is itself immutably borrowed, as otherwise it would allow us to mutate an immutably
borrowed value. Doing so, we precisely capture the constraints of Rust with regards to
reborrows. We now review the rules.

When ending a shared borrow (Reorg-End-SharedReservedBorrow), we render
the borrow unusable henceforth, and replace it with ?. The rule also applies to reserved
borrows which haven’t been promoted to mutable borrows. When ending a shared
loan (Reorg-End-SharedLoan), we check that there doesn’t remain any corresponding
borrows in the environment, then remove the shared loan marker.

When ending a mutable borrow (Reorg-End-MutBorrow), we enforce that we
own the value we are about to return (i.e., there are no loans inside). The borrow then
becomes unusable by being replaced with ?, and the borrowed value is returned to its
rightful owner.

This high-level approach to the Rust semantics allows us to very naturally account
for an oft-used Rust feature, namely two-phase borrows, which are introduced in many
places when desugaring to MIR and enable a variety of very common idioms [404]
without resorting to more advanced desugarings. We account for those through what
we call reserved borrows. Reserved borrows are created just like shared borrows
(E-ReservedBorrow). However, reserved borrows cannot be copied, dereferenced, or
written into. Therefore, the only way to use a reserved borrow is to strengthen it into a
mutable borrow, which is legal, as long as all other (shared or reserved) borrows have
ended (Reorg-Activate-Reserved).

These rules are declarative and non-ordered; in practice, our tool performs a syntax-
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directed reorganization guided by the various preconditions on our rules. For instance,
whenever loans,m 62 v appears as a premise, we perform a traversal of v to end whichever
loans we encounter.





Chapter 10

Symbolic Semantics (LLBC#)

Our semantics allows us to keep track of borrows and ownership in an exact fashion. We
now ask: if we adopt a modular approach and treat function calls as opaque, how much
can we leverage borrows and regions to still enable precise tracking of ownership and
aliasing? We answer that question with a region-centric shape analysis that abstracts
away the effect of a function call on the ownership graph, via a notion of region
abstraction. We dub the result our “symbolic semantics”, or LLBC#; it is, obviously,
less precise than our earlier concrete semantics; yet, it contains enough ownership and
aliasing information that we can generate a functional translation from it. Our symbolic
semantics very much resembles the concrete semantics; this time, however, we turn out
attention to the region information provided by function signatures to abstract away
subsets of the ownership graph.

In this section, we introduce a few additional restrictions on the subset of Rust
we can handle. We temporarily assume every disjunction in the control-flow is in
terminal position; this is a strong restriction, which in practice requires duplicating the
continuation of conditionals and matches, but that we will lift in Section 12.1. We also
temporarily assumed the code doesn’t contain loops; we defer the support for loops in
the symbolic semantics to Section 12.2; this first version of the semantics does, however,
support recursive functions. We disallow nested borrows in function signatures, but
users can still manipulate arbitrarily nested borrows within function bodies. We also
disallow instantiating a polymorphic function with a type argument that contains a
borrow, and do not allow type declarations that contain borrows. We believe most of
the latter issues can be addressed with moderate modifications to LLBC#, and leave
them as future work. Finally, let us reiterate the fact that we do not model traits in
our semantics, though traits are supported by the implementation.

173
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10.1 Symbolic Semantics by Example

10.1.1 Symbolic Values and Matches

A first concept we need to add to our toolkit is that of a symbolic value, that is, a value
which is not statically known; we write (� : ⌧) to denote a symbolic value � of type
⌧ . We now illustrate how symbolic values behave, notably in the presence of matches,
which refine our static knowledge.

1 fn f(mut o: Option<i32>) {
2 // Initial state:

3 // o 7! (� : Option i32)

4 let po = &mut o;
5 // o 7! loan

m `; po 7! borrow
m ` (� : Option i32)

6

7 match *po {
8 None => {
9 // o 7! loan

m `; po 7! borrow
m ` (None)

10 panic!();
11 }
12

13 Some => {
14 // o 7! loan

m `; po 7! borrow
m ` (Some (�0 : i32))

15 let r = &mut (*po).Some.0;
16 // o 7! loan

m `; po 7! borrow
m ` (Some (loanm `0)); r 7! borrow

m `0 (�0 : i32)

17 *r = 1;
18 // o 7! loan

m `; po 7! borrow
m ` (Some (loanm `0)); r 7! borrow

m `0 1

19 *po = None;
20 // o 7! loan

m `; po 7! borrow
m ` (None); r 7! ?

21 }
22 }
23 }

Our semantics only models pairs and sums; in the snippet of code above Option i32

is syntactic sugar for i32+ (), while Some and None are sugar for Left and Right,
respectively. The symbolic value � stands in for the function parameter whose concrete
value is unknown at run-time; � can be borrowed mutably like any regular value (line 4).

At line 7, we perform a case analysis; at this stage, all we know is that the scrutinee
∗po evaluates to the symbolic value �, of the correct type Option i32. In order to check
the branches, we treat each one of them individually, in each case refining � with a
more precise value according to the constructor of the branch. Simply said, in the None
case, we replace every occurrence of � with None, and in the Some case, we replace
every occurrence of � with Some (�0 : i32), where �0 is a fresh symbolic value.
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More interesting pointer manipulations follow in the Some branch. We borrow
the value within the option via r, using a projector syntax inspired by MIR’s internal
representation of projectors. This borrowing incurs no loss in precision in our alias
tracking: because we refined � earlier, we know that both o and po are unusable as long
as r lives.

Importantly, this precise tracking of the borrow graph forbids changing the enum
variant of o, while its value or one of its fields is borrowed: this disallows leftover
borrows pointing to data of the wrong (previous) type, which would make our execution
unsound. More precisely, when the user changes the enum variant at line 19, our symbolic
semantics requires to give up ownership of r, in order to regain po 7! borrow

m ` (Some 1),
which by virtue of containing no “outer” loans makes the update valid.

10.1.2 Function Calls: Single Region

We now switch from the callee to the caller’s perspective, and turn our attention
to function calls. We introduce a new concept of region abstractions to our borrow
graph. An abstraction owns borrows and loans, but does so abstractly; that is, we
have no aliasing information about values in an abstraction, and in particular we don’t
know which borrow corresponds to which loan. Region abstractions allow us to retain
ownership and aliasing information in the presence of function calls; they are introduced
when a call takes place, upon which they assume ownership of the call’s arguments;
they are terminated whenever the caller relinquishes ownership of (part of) the return
value, upon which ownership flows back to the original arguments.

Before modifying the semantics from Chapter 9, we illustrate region abstractions
with an example. We revisit our earlier test_choose function (Section 8.2).

1 let mut x = 0;
2 let mut y = 0;
3 let px = &mut x;
4 let py = &mut y;
5 // x 7! loan

m `x, y 7! loan
m `y, px 7! borrow

m `x 0, py 7! borrow
m `y 0

6 let pz = choose(true, move px, move py);
7 // x 7! loan

m `x, y 7! loan
m `y, px 7! ?, py 7! ?,

8 // A(⇢) { borrow
m `x 0, borrow

m `y 0, loan
m `r }

9 // pz 7! borrow
m `r (� : u32),

10 *pz = *pz + 1;
11 // x 7! loan

m `x, y 7! loan
m `y, px 7! ?, py 7! ?,

12 // A(⇢) { borrow
m `x 0, borrow

m `y 0, loan
m `r }

13 // pz 7! borrow
m `r (�0 : u32)

14

15 // Step 1:
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16 // x 7! loan
m `x, y 7! loan

m `y, px 7! ?, py 7! ?,
17 // A(⇢) { borrow

m `x 0, borrow
m `y 0, �0 }

18 // pz 7! ?
19

20 // Step 2:

21 // x 7! loan
m `x, y 7! loan

m `y, px 7! ?, py 7! ?,
22 // _ 7! borrow

m `x �x, _ 7! borrow
m `y �y

23 // pz 7! ?
24

25 // Step 3:

26 // x 7! �x, y 7! loan
m `y, px 7! ?, py 7! ?,

27 // _ 7! ?, _ 7! borrow
m `y �y

28 // pz 7! ?
29 assert!(x == 1);

Up to line 4, the usual set of rules apply and yield an environment that is consistent
with Chapter 9. Our abstract rules come in at line 6, where we are faced with a function
call. We now need to abstract the call, that is, precisely capture how the function call
affects the borrow graph, without looking at the definition of the function itself. To do
so, we have only one piece of information at our disposal: the type of choose, namely
fnh⇢i(bool,&⇢

mut u32,&⇢
mut u32)! &⇢

mut u32.
The type of choose conveys two key pieces of information: first, it consumes two

mutable borrows in order to produce a fresh (abstract) return value; second, the borrows
and the return value belong to the same region ⇢. This region gives us the constraint
that, for as long as the output borrow is alive, we have to consider that the input borrows
as alive; as such it gives us a summary of the function. We proceed as follows. We
allocate a fresh region abstraction A(⇢), which owns the consumed arguments pertaining
to region ⇢; in our case, borrowm `x 0 and borrow

m `y 0. (In the case of multiple regions
appearing inside the function type, we need to project the ownership of the arguments
along their respective regions; we handle this case formally in Section 10.2.) We know
that the return value pz has type &⇢

mut u32; furthermore, the region in the type tells
us that the owner of this abstract value is the abstraction A(⇢). Necessarily, pz has a
value of the shape borrow

m `r (� : u32), for some fresh loan identifier `r and symbolic
value �; because the borrow `r belongs to region ⇢, its corresponding loan is placed
inside the region abstraction A(⇢). We obtain the environment at lines 7-9, where the
ownership of both px and py has been transferred to the region abstraction, and where
pz has full ownership of a value loaned from the region abstraction. Intuitively, a region
abstraction is a bag containing borrows (what has been consumed) and loans (what
has been produced).

At line 10, the mutation type-checks, and does not affect the abstract environment:
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the symbolic value � borrowed through pz is simply replaced by a fresh symbolic
value �0 stemming from the addition. At that stage, we cannot read from x since it is
mutably loaned; we therefore need to reorganize the environment to make the assertion
at line 29 succeed. Since we do not have any precise knowledge about the aliasing
relationship between x, y and pz, we cannot return ownership to x directly; we must
return ownership en masse by terminating region A(⇢). We do so by terminating the
borrow for pz, which returns the abstract value �0 to A(⇢) (step 1, lines 15-18). Now
that A(⇢) has no outstanding loans left, we can terminate A(⇢) itself. This reintroduces
in the environment borrows lx and ly with fresh values, and replaces the borrowed
values they held (0 in both cases) with fresh symbolic values to account for potential
modifications (lines 20-23). These borrows are placed in anonymous variables, i.e. they
are not directly accessible to the user; they once again solely ensure we do not lose
ownership information. A final reorganization of the environment terminates `x, and
makes x usable again (lines 25-28).

Discussion. We see our region abstractions as a form of magic wands; a function call
consumes part of the memory, and returns a magic wand (the region abstraction) along
with its argument (the returned value). Regaining ownership of the consumed memory
requires applying the magic wand to its argument, hence surrendering access to the
returned value.

10.1.3 Function Calls: Multiple Regions

We now study a call to the swap function, which permutes the two components of a
single tuple, located in two different regions.

fn swaph↵, �i(z : (&↵
mut u32,&�

mut u32))! (&�
mut u32,&↵

mut u32)

We examine a call let r = swap (move z) in the following environment:

x 7! loan
m `x, y 7! loan

m `y, z 7! (borrowm `x 0, borrowm `y 0)

This time, the presence of two regions forces us to be more precise. We dispatch each
component of the argument and each component of the returned value to its respective
region abstraction. We get the following environment after the function call, where
the value _ inside a region stands for a value which is ignored, because it belongs to a
different region:

x 7! loan
m `x, y 7! loan

m `y, z 7! ?,

A(↵){ (borrowm `x 0, _), (_, loan
m `r) },

A(�){ (_, borrow
m `y 0) (loanm `l, _) },

r 7! (borrowm `l �l, borrow
m `r �r)
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v ::= value

...
� symbolic value

_ ignored value (only used in region abstractions)

A ::= Aid { [v] } region abstraction

⌦LLBC ::= { state

env : id �!
partial

v,

abs : Aid �!
partial

A,

stack : [[x]] }

Figure 10.1: LLBC#: States and Values

In the resulting environment, z has been consumed. The return value r contains a
pair of mutable borrows whose corresponding loans are dispatched between the region
abstractions for ↵ and �. We also note that the two regions are completely independent;
for instance, once can end A(↵) to get access back to x:

x 7! loan
m �x, y 7! loan

m `y, z 7! ?,
_ 7! ?,

A(�){ (_, borrow
m `y 0) (loanm `l, _) },

r 7! (borrowm `l �l, ?)

10.2 From Concrete to Symbolic Semantics

We define our symbolic semantics, LLBC#, mostly as an extension of our earlier
formalism, along with a new rule for function calls. First, we extend values and
environments to account for symbolic values, denoted � (Figure 10.1), as well as region
abstractions.

We present the additional rules for LLBC# in Figure 10.2. We also slightly modify
the evaluation statement: a statement now evaluates to a set of tagged states (i.e.,
pairs of a control-flow tag and a state). For instance, E-Seq-Symbolic states that when
evaluating a sequence s0; s1 we evaluate the first statement then, for all the successful
evaluations which do not break the control-flow (i.e., which have the tag unit), we
evaluate the second statement. We introduce new reorganization rules to “expand”
symbolic values; for instance, Reorg-SymbolicPair allows expanding a symbolic value
� : (⌧0, ⌧1) of type pair into a pair of fresh symbolic values �0 : ⌧0 and �1 : ⌧1, by
substituting � with (�0 : ⌧0, �1 : ⌧1) in the environment. An enum can not be expanded
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Reorg-End-MutBorrow#
hole of ⌦[loanm `, .] not inside a borrowed value or a region abstraction

no loan, borrow
r 2 v

⌦[loanm `, borrowm ` v] ,! ⌦[v,?]

Reorg-End-SharedReservedBorrow#
hole of ⌦[.] not inside a borrowed value or a region abstraction

⌦[borrows,r `] ,! ⌦[?]

Reorg-End-Abstraction
no borrows, loans 2 �!v ,

�!
v0 �!� fresh

⌦, A {�!v ,
������!
borrow

s `,
������������!
borrow

m `0 (v0 : ⌧) } ,! ⌦,
����������!
_! borrow

s `,
����������������!
_! borrow

m `0 (� : ⌧)

E-IfThenElse-Symbolic
⌦ ` op + (v, ⌦0) v = (� : bool) _ v = loan

s ` (� : bool)

⌦0 = ⌦0[true
.
�] ⌦1 = ⌦0[false

.
�] ⌦0 ` s0  S#

0 ⌦1 ` s1  S#
1

⌦ ` if op then s0 else s1  S#
0 [ S#

1

E-Match-Symbolic
` ⌦(p)

imm) v

v = (� : ⌧0 + ⌧1) _ v = loan
s ` (� : ⌧0 + ⌧1) �0, �1 fresh ⌦0 = ⌦0[Left (�0 : ⌧0)

.
�]

⌦1 = ⌦0[Right (�0 : ⌧0)
.
�] ⌦0 ` s0  S#

0 ⌦1 ` s1  S#
1

⌦ ` (match pwith | Left ) s0 | Right ) s1) S#
0 [ S#

1

E-Seq-Symbolic
⌦ ` s0  {((),⌦i)} [ S# 8 r 2 S#, 8 ⌦, r 6= ((),⌦) 8 i, ⌦i ` s1  S#

i

⌦ ` s0; s1  S# [ ([
i
S#
i )

Copy-Symbolic
�0 fresh

` copy � = �0

Reorg-SymbolicBox
�0 fresh

⌦[� : Box ⌧ ] ,! ⌦[Box�0]

Reorg-SymbolicPair
�0, �1 fresh

⌦[� : (⌧0, ⌧1)] ,! ⌦[(�0, �1)]

Figure 10.2: LLBC#: Additional Rules
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during a reorganization; only matches allow doing so. In this case we continue the
evaluation inside the branches after substituting the enum value into either of its
variants (E-Match-Symbolic).

We also replace the rules to end borrows with more general versions to account for ab-
stractions (Reorg-End-MutBorrow# and Reorg-End-SharedReservedBorrow#).
Those rules forbid ending directly a borrow which is inside a region abstraction;
one needs to end the whole region abstraction first, with a new reorganization rule
Reorg-End-Abstraction. This rule states that, if there doesn’t remain any loans in
the region abstraction, we can end it to reintroduce its borrows in the environment
inside anonymous variables, replacing the mutably borrowed values with fresh symbolic
values.

Function calls (E-Call-Symbolic) require several steps. First, we evaluate all the
operands to compute the input values. We then introduce fresh region abstractions
for the set of regions �!⇢ in the signature and whose content is defined through an
auxiliary judgement (InstSig). We need to dispatch, or “project”, the input borrows
into the region abstractions they belong to; this is done through an auxiliary device
proj_input (Figure 10.4). The expression proj_input ⇢ (v : ⌧) defines the projection of
the borrows belonging to region ⇢ of the value v seen as having type ⌧ ; the type ⌧ , in
which borrows are annotated with regions, is derived from the type of the function.
The rules are straightforward: if ⌧ does not contain the region ⇢ following which we are
projecting, we ignore the value (ProjInput-Ignore); we project borrows belonging to
⇢ (ProjInput-Shared, ProjInput-Mut); we independently project the fields of ADTs
(ProjInput-Pair). We also need to introduce borrows and loans for the output value;
this is done through an auxiliary projector proj_output (Figure 10.5). At the difference
of proj_input, proj_output takes as input not a value but the type of the output value,
and evaluates to an output value (containing fresh borrows) as well as sets of loans,
grouped according to the regions they belong to; the rules are similar to the ones
defining proj_input.

Let us revisit the example from Section 10.1.3. The function swap has the following
signature:

fn swaph↵, �i(z : (&↵
mut u32,&�

mut u32))! (&�
mut u32,&↵

mut u32)

We examine a call let r = swap (move z) in the following environment:

x 7! loan
m `x, y 7! loan

m `y, z 7! (borrowm `x 0, borrowm `y 0)

We introduce regions for ↵ and �, and need to dispatch its input (borrowm `x 0, borrowm `y 0)
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E-Call-Symbolic (LLBC
#

only)

fh~⇢, ~⌧i = fn h~⇢i (�!x : �!⌧ ) (�!y :
�!
⌧ 0 ) (xret : ⌧ret) { s } ⌦j ` opj + (vj , ⌦j+1)

�!⇢ fresh
����!
Asig(⇢), vout = inst_sig(⌦n, ~⇢,~v, ⌧ret) ⌦n,

����!
Asig(⇢) ` p := vout  ((), ⌦0)

⌦0 ` p := fh~_, ~⌧i(�!op) ((), ⌦0)

InstSig
8 ⇢, Ain(⇢) = {proj_input ⇢ vi}
proj_output ~⇢ ⌧ = (vout,

����!
Aout(⇢))

8 borrows ` 2 ~v, 9 v, loans ` v 2 ⌦
8 ⇢, Asig(⇢) = Ain(⇢) [Aout(⇢)

inst_sig (⌦, ~⇢, ~v, ⌧) =
����!
Asig(⇢), vout

Figure 10.3: LLBC#: Function Calls

accordingly. From the signature of swap, we learn that, from the point of view of swap,
the input has type (&↵

mut u32,&�
mut u32). We project following ↵:

proj_input ↵ ((borrowm `x 0, borrowm `y 0) : (&↵
mut u32,&�

mut u32))

= (proj_input ↵ (borrowm `x 0 : &↵
mut u32), proj_input ↵ (borrowm `y 0 : &�

mut u32))

= (borrowm `x _, _)

The projection of the input value following � is similar. We now need to compute the
output. We have, for the first element of the returned pair:

proj_output {↵, �} (&�
mut u32) = (borrowm `l �l, {Aout(↵) = {}, Aout(�) = {loanm `l}})

Similarly, for the second element:

proj_output {↵, �} (&↵
mut u32) = (borrowm `r �r, {Aout(↵) = {loanm `r}, Aout(�) = {}})

This gives us, for the whole pair:

proj_output {↵, �} (&↵
mut u32, &�

mut u32) =

((borrowm `l �l, borrow
m `r �r), {Aout(↵) = {loanm `r}, Aout(�) = {loanm `l}})

Putting everything together, we get the environment shown in Section 10.1.3.
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ProjInput-Ignore
⇢ /2 ⌧

proj_input ⇢ (v : ⌧) = _

ProjInput-Pair
proj_input ⇢ v0 = v00 proj_input ⇢ v1 = v01

proj_input ⇢ (v0, v1) = (v00, v
0
1)

ProjInput-Shared
no borrows 2 ⌧

proj_input ⇢ (borrows ` : &⇢ ⌧) = borrow
s `

ProjInput-Mut
no borrows 2 v

proj_input ⇢ (borrowm ` v : &⇢mut ⌧) = borrow
m ` _

Figure 10.4: LLBC#: Input Projections

ProjOutput-Symbolic
� fresh no borrows 2 ⌧

proj_output ~⇢ ⌧ = (�,
��!
A(⇢))

ProjOutput-Pair
proj_output ~⇢ ⌧0 = (v0,

���!
A1(⇢))

proj_output ~⇢ ⌧1 = (v1,
���!
A2(⇢))

8 ⇢, A(⇢) = A1(⇢) [A2(⇢)

proj_output ~⇢ (⌧0, ⌧1) = ((v0, v1),
��!
A(⇢))

ProjOutput-Shared
no borrows 2 ⌧ �, ` fresh

A(⇢) = { loan
s ` � } 8 ⇢0 6= ⇢, A(⇢0) = {}

proj_output ~⇢ (&⇢ ⌧) = (borrows `,
��!
A(⇢))

ProjOutput-Mut
no borrows 2 ⌧ �, ` fresh

A(⇢) = { loan
m ` } 8 ⇢0 6= ⇢, A(⇢0) = {}

proj_output ~⇢ (&⇢mut ⌧) = (borrowm ` �,
��!
A(⇢))

Figure 10.5: LLBC#: Output Projections



Chapter 11

Soundness: LLBC# Defines a
Borrow-Checker

In the previous chapter we introduced LLBC, an operational semantics for safe Rust
focused on the semantics of borrows. By tweaking the semantics of LLBC we also
produced LLBC#, a symbolic semantics for LLBC. We claimed that a symbolic inter-
preter for LLBC# implements a borrow-checker for Rust; in this chapter we set out to
substantiate this claim. Doing so requires proceeding in several steps.

First, the soundness of LLBC# is predicated on the LLBC model being a sound
foundation. LLBC has several unusual features, such as attaching values to pointers
rather than to the underlying memory location, or not relying on an explicit heap;
right now, it requires a leap of faith to believe that this is an acceptable way to model
Rust programs. The value of LLBC is that it explains, checks and provides a semantic
foundation for reasoning about many Rust features; but the drawback is that one has
to trust that this semantics makes sense. We remark already that this question is
orthogonal to the RustBelt line of work. RustBelt attempts to establish the soundness of
Rust’s type system with regards to �Rust, whose classic, unsurprising semantics does not
warrant scrutiny. Clarifying the link between LLBC and a standard heap-and-addresses
model is not just a matter of theory: once the Rust compiler emits LLVM bitcode,
the heap and addresses become real. Finally, we note that the essential property of
a borrow-checker is to ensure memory safety; as a consequence, we can actually not
specify what it means for LLBC# to define a borrow-checker in the first place, without
first linking LLBC to more standard semantics which explicitly model the heap.

The second issue relates to LLBC# itself. LLBC# shares most of its semantics
with LLBC with the exception of function calls, where it uses function signatures as
summaries to approximate parts of the borrow graph by leveraging the so-called region
abstractions. In spite of carefully-crafted rules that emphasize readability and simplicity,
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the formal argument that it correctly approximates LLBC is highly non trivial.
In this chapter, we set out to address those two issues, and introduce new proof

techniques to do so. First, we establish that LLBC is, indeed, a reasonable model
of execution, and that in spite of some mildly exotic features, it really does connect
to a traditional heap-and-addresses model of execution. Second, we show that the
symbolic semantics of LLBC correctly approximates its concrete semantics, and thus
that successful executions in the symbolic semantics guarantee the soundness of concrete
executions – in short, that the symbolic interpreter acts as a borrow checker.

Because LLBC can, in some situations, analyze code more precisely than the Rust
borrow-checker, we are therefore able to prove the soundness of more programs than
the Rust compiler itself. We thus hope that this work sheds some light on potential
improvements to the current implementation of the borrow-checker, backed by an actual
formal argument.

More precisely, we do the following:
We introduce PL, for “pointer language”, which uses a traditional, explicit heap

inspired by CompCert’s C memory model, and show that it refines LLBC (Section 11.2).
This allows us to establish that a low-level model (where values live at a given address)
refines the Rust model given by LLBC (where borrows hold the value they are borrowing).
These two semantics have opposite perspectives on what it means to have a pointer.

We prove that LLBC itself refines the symbolic version of LLBC. Combined with
the previous result, this allows us to precisely state why LLBC# is a borrow-checker for
LLBC: if an LLBC# execution succeeds, then any corresponding low-level PL execution
is safe for all inputs. We obtain this result by a combination of forward simulations,
along with the determinism of the target (PL) language; we also reason about what it
means for a low-level (PL) initial state to satisfy a function signature with ownership
constraints in LLBC#.

To conduct these proofs of refinement, we introduce a novel proof technique that
relies on the fact that our languages operate over the same grammar of expressions,
but give it different meanings, or views (Section 11.1). For instance: both our heap-
and-address (PL) and borrows-and-loans (LLBC) views operate over the same program
syntax, but have different types for their state and reduction rules. Rather than go
full-throttle with a standard compilation-style proof of simulation, we reason modularly
over local or pointwise transformations that rewrite one piece of state to another –
proofs over those elementary transformations are much easier. We then show that two
states that are related by the transitive closure of these elementary transformations
continue to relate throughout their execution, in the union of the semantics, ultimately
giving a proof of refinement.
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In order not to overwhelm the reader with technical details, we only present our
proof methodology and the important theorems, and leave the detailed proofs with the
necessary intermediate lemmas in appendix.

PL
- heap & addresses
- classic semantics

HLPL
- locations & pointers
- values with locations

LLBC
- loans & borrows
- values with borrows

LLBC#
- modular analysis
- abstract values

HLPL+
- equipped with ≤
- HLPL is a stable subset

forward 
simulation
(classic)

forward 
simulation
(new style, §3)

forward 
simulation
(new style, §4)

(main result)
bisimulation, under successful LLBC# execution (“borrow-checking”)

LLBC+
- equipped with ≤
- LLBC is a stable subset

Figure 11.1: The architecture of our proof

11.1 A Generic Approach to Proving Language Simu-
lations

As is standard in this kind of work, we go through several intermediate languages in
order to relate our high-level (LLBC#) and low-level (PL) languages (Figure 11.1). This
allows for modular reasoning, where each step focuses on a particular semantic concept.

To conduct these various refinement steps, we design a new, reusable proof method-
ology that allows efficiently establishing simulations between languages via the use of
local and pointwise reasoning. We use this generic methodology repeatedly throughout
the rest of the paper, so as to make our various reasoning steps much more effective;
we now present the idea in the abstract, and apply it to our use-cases in subsequent
sections (Section 11.2, Section 11.3).

Our approach consists of a generic proof template for establishing simulations
between two languages Ll and Lh that share a grammar of statements, but whose
semantics and notions of states differ. To simplify the presentation, we focus on forward
simulations, but the methodology can be easily adapted to work dually for backward
simulations. We briefly touch on this at the end of this section, and later discuss why
we focus on forward simulations in this work, in Section 11.2.1.

Formally, we write ⌦l, ⌦h for low-level and high-level states respectively; , for
a given relation that refines a high-level state into a low-level state, i.e., ⌦l  ⌦h;



186 Soundness of the Symbolic Semantics

and ⌦l `l e +l (e0,⌦0l) (respectively, h), for the reduction of expressions into another
expression and resulting state. We do not make any assumptions about what kind
of reduction + is (small or big step); we simply assume one can perform inductive
reasoning over it. We may omit some of the indices when clear from the context.

We aim to establish the following property:

Definition 1 (Forward Simulation). For all states ⌦l, ⌦h:

⌦l  ⌦h )

8 e e0⌦0h, ⌦h `h e +h (e0,⌦0h))

9 ⌦0l, ⌦l `l e +l (e0,⌦0l) ^ ⌦0l  ⌦0h

Proving this property in a direct fashion can be tedious. When states ⌦l and ⌦h

heavily differ, for instance because they operate at different levels of abstraction, the
state relation commonly consists of complex global invariants, which are tricky to both
correctly define and reason about, and oftentimes require maintaining auxiliary data
structures, such as maps between high and low, for the purposes of the proof.

To circumvent this issue, our approach relies on two key components. First, instead
of a global relation between states ⌦l and ⌦h, we define a set of small, local rules, the
transitive closure of which constitutes  (Section 11.1.1). These can then be reasoned
upon individually.

Second, we add the ability to reason about states that contain a mixture of high and
low, which we dub “hybrid” (Section 11.1.2). These now occur because our rewritings
operate incrementally, and thus may give rise to states that belong neither to Ll nor Lh.
Since the proof of forward simulation involves an induction on +, we now must reason
about the reduction of terms in hybrid states. Note that, if the empty states in Ll and
Lh are related, we retrieve standard simulation properties, namely that the execution
of a closed program in Ll is related to its execution in Lh. This will be the case for the
state relations in Section 11.2 and Section 11.3.

11.1.1 Local State Transformations

To illustrate the idea of state relations based on local transformations, we take the
simplistic example of a state that contains two integer variables x and y; in ⌦l, x and y

contain concrete values; in ⌦h, x and y contain symbolic (or abstract) values. This is a
much-simplified version of the full proof we later develop in Section 11.3; the setting
of abstract/concrete values makes it easy to illustrate the concept. In this example,
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our goal is to prove that Lh implements a sound symbolic execution for Ll. Instead
of defining a global relation using universal quantification on all variables, we instead
define a local relation that, for a given variable, swaps its concrete value n and its
corresponding abstract version � in Lh. We concisely write ⌦[n]  ⌦[�], leveraging a
state-with-holes notation for ⌦.

Establishing Ll  Lh involves repeatedly applying this relation; to either x followed
by y, or y followed by x; the locality of the transformation enables us to reason modularly
about both variables. Naturally, once the reasoning becomes more complex, the ability
to consider a single transformation at a time is crucial.

We remark that these individual transformations are non-directed, and can be read
either left-to-right or right-to-left. In our example, when read left-to-right, we have an
abstraction; when read right-to-left we have a concretization. This supports our later
claim that this methodology works for both forward and backward simulations.

11.1.2 Reasoning over a Superset Language

By defining the state relation  as the reflexive, transitive closure of local relations, we
can now attempt to prove forward simulation by a standard induction on the evaluation
in Lh, followed by an induction on the  relation.

However, one problem arises: intermediate states do not belong to either language,
and hence do not have semantics. To see why, consider in our proof the induction
step corresponding to the transitivity of the relation, where we have an intermediate
state ⌦m such that ⌦l  ⌦m  ⌦h, and we want to use an induction hypothesis on
⌦m  ⌦h. We do so in order to establish that if ⌦h `h e +h (e0,⌦0h) and ⌦m  ⌦h, then
⌦m ` e + (e0,⌦0m) and ⌦0m  ⌦0h – this is the induction on the size of  for the purposes
of establishing the forward simulation. This is fine, except reduction is not defined for
hybrid states like ⌦m which contain a mixture of high-level and low-level.

To address this issue, we instead consider a superset language L+ that contains
semantics from both Ll and Lh.

Coming back to our previous example, let us assume that we want to update variable
x. If x has already been rewritten, we can rely on the corresponding semantic rule in Lh,
otherwise we execute the program according to the semantics in Ll. For our simplistic
example, no further rules are needed, and the strict union suffices, i.e. L+ = Ll [ Lh.
We will see shortly that this strict union is not always adequate in the general case.

With this approach, we establish the following theorem for two concrete languages
Ll and Lh:

Theorem 1 (Forward Simulation on Superset Language). For all L+ states ⌦1, ⌦2, we
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have:

⌦1  ⌦2 )

8 e e0⌦02, ⌦2 `+ e ++ (e0,⌦02))

9 ⌦01, ⌦1 `+ e ++ (e0,⌦01) ^ ⌦01  ⌦02

Unfortunately, instantiating this theorem with states ⌦1 = ⌦l 2 Ll and ⌦2 = ⌦h 2
Lh does not allow us to derive Theorem 1, which was our initial goal. Indeed, ⌦1

initially belongs to Ll but reduces with ++, i.e., with the union of the semantics, and
so far nothing allows us to conclude that the resulting ⌦01 is still in Ll.

To ensure that this execution is valid with respect to Ll, we need to restrict L+ by
excluding a set of rules R from Lh so that Ll and L+ satisfy the following property.

Definition 2 (Stability). Given two languages Ll, L+ such that L+ is a superset
of Ll, we say that Ll is a stable subset of L+ if, for all e, e0,⌦ 2 Ll,⌦+ 2 L+, if
⌦ `+ e ++ (e0,⌦+), then ⌦+ 2 Ll and ⌦ `l e +l (e0,⌦+)

Combined with stability, Theorem 1 allows us to directly derive that Ll and L+

satisfy a forward simulation relation. To conclude, the last remaining step is to establish
the same property between L+ and Lh, which only requires reasoning about the excluded
rule set R.

The earlier simplistic example of concrete/abstract integers requires no particular
care when defining L+, and the union of the rules suffices (i.e., R = ?). But for our
real use-case, one can see from Figure 11.1 that the semantics of HLPL+ exclude some
of the rules from LLBC. We also point out that for our real use-cases, the superset L+

requires additional administrative rules, to make sure high and low compose (as we will
see shortly).

Forward vs. backward. While the presentation focused on forward simulations,
the approach can be easily adapted to backward simulations. Leveraging the duality
between both relations, it is sufficient to exclude a set of rules R from Ll instead of Lh

so that Lh becomes a stable subset of L+, and to similarly conclude by reasoning over
the rules in R.
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11.2 A Heap-and-Addresses Interpretation of Valued
Borrows

Equipped with our generic proof methodology, we now turn to the Low-Level Bor-
row Calculus (LLBC). To remain conceptually close to Rust, we designed LLBC to
operate on states containing loans and borrows. While this helps understanding and
explaining the language from the programmer’s perspective, this model departs from
standard operational semantics for heap-manipulating programs, which commonly rely
on a low-level model based on memory addresses and offsets [393, 405, 406]. In this
section, we thus bridge the abstraction gap, by relating LLBC to a standard, low-level
operational semantics, therefore establishing LLBC as a sound semantic foundation
for Rust programs. To do so, we introduce the Pointer Language (PL), a small lan-
guage explicitly modeling the heap using a model inspired by CompCert’s C memory
model, and establish a relation between LLBC and PL that demonstrates that LLBC’s
borrow-centric view of memory is compatible with classic pointers.

11.2.1 Forward vs Backward

In our proof, the source and target language are the same – we are not doing a compiler
correctness proof. Rather, we reconcile two models of execution over the same syntax of
programs, i.e., given a PL state that concretizes the LLBC state, the program computes
in PL the same result as in LLBC. This is similar to the original circa-2008 style of
CompCert proofs, and qualifies as a forward simulation [405].

Indeed, at this stage, it is not true that every PL execution can be simulated
backwards by an LLBC execution; simply said, a PL program could be safe for reasons
that cannot be explained by LLBC’s borrow semantics. We will see in the next section
(Section 11.3.5) how we can obtain the backwards direction, provided the program is
borrow-checked – a result that is akin to a typing result. For now, we simply seek to
establish that the execution model of LLBC is a correct restriction of a traditional
heap-and-addresses model. To that end, we use the methodology from Section 11.1,
and for now only use the forward direction it gives us.

11.2.2 Difficulties and Methodology

Instead of environments (we use the terms environments and states interchangeably)
containing borrows and loans, the PL language operates on an explicit heap adapted
from the CompCert memory model [406]. In particular, loan identifiers are replaced by
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v ::= value

true | false | ni32 | nu32 | ... literal constants

Left v | Right v sum value

() unit

(v0, v1) pair

? bottom (invalid) value

loc ` v location

ptr ` pointer

⌦HLPL ::= { env : id �!
partial

v, stack : [[x]] } state

Figure 11.2: HLPL: Environments and Values

memory addresses, consisting of a block identifier and an offset, and the memory layout
is made semi-explicit, by including a notion of size for each type.

When attempting to relate LLBC to a lower-level language like PL, two main
difficulties arise. First, manipulating an explicit heap requires operating on sequences
of words, which need to be reconciled with more abstract values. Second, one needs
to relate borrows and loans to low-level pointers. The core of the difficulty lies in the
fact that in LLBC, mutable borrows “carry” the value they borrow, making it hard to
reason about the provenance of a value in the presence of reborrows.

This is where our methodology comes in (Section 11.1). To make the proof simpler
and more modular, we proceed in two steps, via the addition of an intermediary language
dubbed HLPL, for high-level pointer language.

11.2.3 An Intermediary Language: HLPL

As before, the program syntax remains the same; what differs now is that HLPL states
are half-way between PL states and LLBC states. HLPL states no longer feature
borrows and loans; but they retain an abstract notion of pointers and locations, denoted
respectively ptr ` and loc ` v.

The simulation from HLPL to PL is standard and only consists in materializing
locations as a global heap, and mapping pointers to corresponding addresses. We
instead focus on where the challenge lies, namely, going from HLPL (value is with the
location) to LLBC (value is with the borrow).

In addition to the program syntax (same as LLBC) and definition of states (Fig-
ure 11.2), we define the operational semantics of HLPL in Figure 11.3. HLPL shares
most of its semantics with LLBC with the exception that it uses pointer and location
values; in order to go from LLBC to HLPL, we simply replace the rules which manipu-
late borrows and loans (E-MutBorrow, E-SharedBorrow, etc.) with rules handling
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E-Ptr
` ⌦(p)

imm,mut) v

` ⌦(p) v0
imm,mut) ⌦0

v0 =

(
loc ` v00 if v = loc ` v00

loc ` v ` fresh otherwise

⌦ ` {& p, &mut p, &reserved p} + (ptr `, ⌦0)

Reorg-End-Ptr

⌦[ptr `] ,! ⌦[?]

Reorg-End-Loc
ptr ` 62 ⌦[loc ` v]

⌦[loc ` v] ,! ⌦[v]

HLPL-E-Move
` ⌦(p)

mov) v
?, loc 62 v

` ⌦[p ?] mov) ⌦0

⌦ ` move p + (v, ⌦0)

HLPL-E-Box-New
⌦ ` op + (v, ⌦0) lb fresh

⌦ ` new op + (ptr `, (⌦0, lb ! v))

HLPL-E-Box-Free
` (⌦, `b ! v)(p)

mov) ptr `
no locations in v

ptr `b /2 ⌦

` ⌦(p) ? mov) ⌦0

⌦, l! v ` free p + ((), ⌦0, _! v)

HLPL-E-Assign (HLPL only)

⌦ ` rv + (v, ⌦0) ` ⌦0(p)
mut) vp : ⌧ vp has no loc

` ⌦0(p) v
mut) ⌦00 ⌦000 = ⌦00, _! vp

⌦ ` p := rv + ((), ⌦000)

R-Loc
P 6= [.] ⌦ ` P (v)

imm) v0

⌦(p) ` P (loc ` v)
imm) v0

R-Deref-Ptr-Loc
loc ` v 2 ⌦

⌦ ` P (loc ` v)
imm,mut) v0

⌦ ` P (⇤(ptr `)) imm,mut) v0

R-Deref-Box-Id
⌦(`b) = v

⌦ ` P (v)
k) v0

⌦ ` P (⇤(ptr `b)) k) v0

W-Loc
P 6= [.] ⌦ ` P [v] w

imm) (v0, ⌦0)

⌦(p) ` P (loc ` v) w
imm) (loc ` v0, ⌦0)

W-Deref-Ptr-Loc
loc ` v 2 ⌦

⌦ ` P (loc ` v) w
imm,mut) (v0, ⌦0[loc ` v00])

⌦00 = ⌦0[loc ` v0]

⌦ ` P (⇤(ptr `)) w
imm,mut) ptr ` a ⌦00

W-Deref-Box-Id
⌦(`b) = v

⌦ ` P (v) w
k) (v0, ⌦0)

⌦00 = (⌦0(lb) := v0)

⌦ ` P (⇤(ptr `b)) w
k) (ptr `b, ⌦00)

Copy-Loc
` copy v = v0

` copy (loc ` v) = v0

Copy-Ptr

` copy (ptr `) = ptr `

Figure 11.3: HLPL: Semantics
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pointers and locations. Pointers (respectively, locations) behave basically like shared
borrows (respectively, loans), in that the value lives with the location. Unlike shared
borrows, we permit modifications through the pointer. In particular, in HLPL we
evaluate borrowing expressions like &mut p and &p with E-Ptr, which is very similar
to E-SharedBorrow. We remark that HLPL retains some structure still: one can
only update a value x! loc ` 0 via a corresponding pointer p! ptr `, e.g., to obtain
x ! loc ` 1 (W-Deref-Ptr-Loc, in Appendix). Should one want to update x itself,
there must be no outstanding pointers to it (Reorg-End-Ptr), and the location itself
must have been forgotten (Reorg-End-Loc). Just like in LLBC, these reorganizations
may happen at any time, and as in LLBC, a poor choice of reorganizations may lead to
a stuck execution.

Let us contrast the semantics of HLPL and LLBC with an example. We annotated
the snippet of code below with LLBC environments. This example doesn’t introduce
difficulties compared to what we have seen before. One has however to note that the
reborrow on line 3 introduces an indirection between the value of px and x; in order to
see that px actually borrows x, one has to follow `1 then `0.

1 x = 0; // x 7! 0

2 px = &mut x; // x 7! loan
m `0, px 7! borrow

m `0 0

3 px = &mut (*px); // x 7! loan
m `0, _ 7! borrow

m `0 (loanm `1), px 7! borrow
m `1 0

4 assert!(x = 0); // x 7! 0, _ 7! ?, px 7! ?

Let us now look at the same example, but annotated with HLPL environments.

1 x = 0; // x 7! 0

2 px = &mut x; // x 7! loc ` 0, px 7! ptr `

3 px = &mut (*px); // x 7! loc ` 0, _ 7! ptr `, px 7! ptr `

4 assert!(x = 0); // x 7! loc ` 0, _ 7! ptr `, px 7! ptr `

At line 2, we use E-Ptr to introduce a fresh location in x and evaluate &mut x to a
fresh pointer. Contrary to what happens in LLBC, in HLPL we leave pointed values
in place. At line 3, we use E-Ptr again, but this time dereference px (which maps to
ptr `), which yields the value of x (loc ` 0), and create another pointer for this location.
Because this value already contains a location, we do not introduce a fresh location and
simply evaluate &mut (*px) to ptr `. We now evaluate the assignment to px (left hand
side of px = &mut (*px)): we move the current value of px (ptr `) to a fresh anonymous
value, then override the value of px with the result of evaluating the right-hand side
(ptr `).

Finally, at line 4, we need to read x. We can read through locations; we do not
need to end any pointer at this point and leave the environment unchanged. The same
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Le-SharedReserved-To-Ptr

⌦[ptr `]  ⌦[borrows,r `]

Le-MutBorrow-To-Ptr
` /2 ⌦[., .] ` /2 v

⌦[loc ` v, ptr `]  ⌦[loanm `, borrowm ` v]

Le-RemoveAnon
no borrow, loan, location, pointer 2 v

⌦  ⌦, _! v

Le-Merge-Locs
8 v0, loc `0 v0 /2 ⌦[loc ` v]

⌦0 =
h
`
.
`0
i
(⌦[loc ` v])

⌦0  ⌦[loc ` (loc `0 v)]

Le-SharedLoan-To-Loc
borrow

s,r ` /2 ⌦[loc ` v]

⌦[loc ` v]  ⌦[loans ` v]

Le-Box-To-Loc
`b fresh

⌦[ptr `b], lb ! v  ⌦[Box v]

Le-Subst
`0 62 ⌦

h
`0
.
`
i
⌦  ⌦

Figure 11.4: The  Relation on HLPL+ states

happens with shared borrow in LLBC: we can read through shared values. However, if
we were to directly update x, for instance by evaluating x = 1, we would need to end
the location with Reorg-End-Loc, which would require ending the pointers first by
using Reorg-End-Ptr, yielding the environment: x 7! 0, _ 7! ?, px 7! ?.

It is to be noted that E-Ptr applies both to mutable borrows and shared borrows:
if we update the example above to replace the occurrences of &mut with &, we get
exactly the same environments at each program point.

Finally, boxes in HLPL are handled differently than in LLBC. In LLBC, when we
allocate a new box with value v, we simply create a value Box v (E-Box-New). In
HLPL, we create a pointer and introduce a fresh box identifier in the environment; this
allows us to stay close to PL which allocates a fresh memory block.

We now leverage the proof methodology of Section 11.1 to show that there is a
forward simulation from LLBC to HLPL.

11.2.4 The  Relation Between HLPL and LLBC States

Following Section 11.1, the first step consists in introducing a series of local rewriting
rules (Figure 11.4, which defines the relation on hybrid states, that we dub hlpl+ states),
whose transitive closure, written , relates an HLPL state ⌦hlpl to an LLBC state ⌦llbc.
The relation ⌦hlpl  ⌦llbc can be read in both directions; but since we are concerned
here with a forward simulation, we read these rules right to left, that is, we gradually
transform borrows and loans (from LLBC) into pointers and locations (from HLPL).

In effect, this amounts to losing information about the nature of the borrows, in
order to only retain an aliasing graph. Continuing with the right to left intuition,
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Le-MutBorrow-To-Ptr states that we can collapse a pair of a mutable loan and its
corresponding borrow to a location and a pointer. Notice how the value v moves from
being attached to the borrow to being attached to the location; this is the crucial rule
that moves from a borrow-centric view to a location-centric view.

Going back to the reborrowing example from above, we have at line 2 that the LLBC
state (x 7! loan

m `0, px 7! borrow
m `0 0) is related to the HLPL state (x 7! loc ` 0, px 7!

ptr `) by Le-MutBorrow-To-Ptr. The reborrow at line 3 is more interesting; starting
from the LLBC state we have (we are using the notation: ⌦ � ⌦0 () ⌦0  ⌦):

x 7! loan
m `0, _ 7! borrow

m `0 (loan
m `1), px 7! borrow

m `1 0

� x 7! loan
m `0, _ 7! borrow

m `0 (loc `1 0), px 7! ptr `1 (1)

� x 7! loc `0 (loc `1 0), _ 7! ptr `0, px 7! ptr `1 (2)

� x 7! loc `0 0, _ 7! ptr `0, px 7! ptr `0 (3)

By Le-MutBorrow-To-Ptr, we convert the pair borrow/loan for `1 to a pair point-
er/location at step (1). We use Le-MutBorrow-To-Ptr again at step (2), this time
for `0. We now get two stacked locations in x, that we “merge” together by using
Le-Merge-Locs at step (3). This yields the same HLPL environment as at line 3.

Finally, we note that the states after the assert at line 4 are not related: we
can not transform the LLBC state (x 7! 0, _ 7! ?, px 7! ?) to the HLPL state
(x 7! loc ` 0, _ 7! ptr `, px 7! ptr `) by using the rules for . In particular, we note
that the HLPL semantics allows strictly more behaviors than LLBC, as we don’t have
to end the pointers and the location to read x. However, we can end them to yield the
HLPL state x 7! 0, _ 7! ?, px 7! ?, which is related to the LLBC state at the same
program point (they are actually the same).

Converting shared borrows to pointers is even simpler. This time we convert each
shared borrow to a pointer with Le-SharedReserved-To-Ptr, then convert the shared
loan to a location with Le-SharedLoan-To-Loc; we have to convert the borrows first
because of the premise borrow

s ` /2 ⌦ in Le-SharedLoan-To-Loc.
Let us illustrate the conversion of shared borrows with an example. Below, we

annotated each program point with LLBC environments.

1 x = 0; // x 7! 0

2 px = &x; // x 7! loan
s ` 0, px 7! borrow

s `

3 px = &(*px); // x 7! loan
s ` 0, _ 7! borrow

s `, px 7! borrow
s `

4 assert!(x = 0); // x 7! loan
s ` 0, _ 7! borrow

s `, px 7! borrow
s `

Because in HLPL mutable borrows and shared borrows are evaluated with the same
rule (E-Ptr), the HLPL environments are the same as in the mutable case.
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1 x = 0; // x 7! 0

2 px = &x; // x 7! loc ` 0, px 7! ptr `

3 px = &(*px); // x 7! loc ` 0, _ 7! ptr `, px 7! ptr `

4 assert!(x = 0); // x 7! loc ` 0, _ 7! ptr `, px 7! ptr `

For the reborrow at line 3, we have:

x 7! loan
s ` 0, _ 7! borrow

s `, px 7! borrow
s `

� x 7! loan
s ` 0, _ 7! borrow

s `, px 7! ptr ` (1)

� x 7! loan
s ` 0, _ 7! ptr `, px 7! ptr ` (2)

� x 7! loc ` 0, _ 7! ptr `, px 7! ptr ` (3)

We also provide a few administrative rules. For instance, Le-RemoveAnon allows
to remove an anonymous value from the context, as long as it doesn’t contain loans,
borrows, locations or pointers; such values are de facto useless, and this rule allows
us to formally ignore them. We transform LLBC boxes into an HLPL boxes with
Le-Box-To-Loc, which introduces a fresh box identifier in the environment. The rule
Le-Subst also allows us to substitute identifiers, which is necessary in the proof of the
forward simulation between HLPL and LLBC.

11.2.5 Working in HLPL+

Naturally, reasoning about  (in order to establish the forward simulation, as we do in
the next paragraph) is conducted via reasoning by induction. Specifically, we do the
proof by induction on the evaluation derivation, then in each sub-case do an induction
on . This is the essence of our proof technique, which emphasizes local and pointwise
reasoning rather than global invariants. In particular, we took great care to define the
rules of  either as local transformations (by defining them with states with holes), or
as pointwise transformations (Le-Merge-Locs).

As we explained earlier (Section 11.1), this leads us to reason about hybrid states
that contain both loans and borrows (like LLBC states) as well as locations and pointers
(like HLPL states). We call such states HLPL+ states, and per Section 11.1 set out to
give an operational semantics to HLPL+.

Since HLPL+ shares the same syntax as HLPL and LLBC, it suffices to take the
union of the rules from HLPL and LLBC, adding HLPL+-specific rules (Figure 11.5),
and excluding the rules marked (LLBC only). The LLBC-only rules introduce new
loans and borrows; by excluding those, we get that HLPL is a stable subset of HLPL+

(Definition 2).
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HLPL+-E-Ptr

` ⌦(p)
imm,mut) v ` ⌦(p) v0

imm,mut) ⌦0 v0 =

8
><

>:

loc ` v00 if v = loc ` v00

loc ` v00 if v = loan
s ` v00

loc ` v ` fresh otherwise

⌦ ` {& p, &mut p, &reserved p} + (ptr `, ⌦0)

HLPL+-E-Assign
⌦ ` rv + (v, ⌦0) ` ⌦0(p)

mut) vp
vp has no outer loan, no loc

` ⌦0(p) v
mut) ⌦00 ⌦000 = ⌦00, _! vp

⌦ ` p := rv + ((), ⌦000)

R-Deref-Ptr-SharedLoan
loan

s ` v 2 ⌦ ⌦ ` P (loans ` v)
imm) v0

⌦ ` P (⇤(ptr `)) imm) v0

HLPL+-E-Move
` ⌦(p)

mov) v
?, loan, borrowr, loc 62 v

` ⌦[p ?] mov) ⌦0

⌦ ` move p + (v, ⌦0)

W-Deref-Ptr-SharedLoan
loan

s ` v 2 ⌦ ⌦ ` P (loans ` v) w
imm) (v0, ⌦0[loans ` v00]) ⌦00 = ⌦0[loans ` v0]

⌦ ` P (⇤(ptr `)) w
imm) (ptr `, ⌦00)

HLPL+-Reorg-End-SharedLoan
borrow

s,r `, ptr ` 62 ⌦[loans ` v]

⌦[loans ` v] ,! ⌦[v]

Figure 11.5: Additional Rules for HLPL+
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The HLPL+ rules are in Figure 11.5. We replace E-Ptr with HLPL+-E-Ptr, which
is slightly more general to account for hybrid states; namely, we might want to create
a pointer to a shared loan, in which case we do not introduce a fresh location. In a
similar vein, R-Deref-Ptr-SharedLoan deals with a hybrid state where the state still
contains a loan, but the value being reduced is an HLPL pointer, not a borrow. On
its side, HLPL+-E-Assign shows how to add extra preconditions to extend the “no
outstanding borrows” condition (required in LLBC for soundness) to a hybrid world in
which there might be locations, too. We skip the other rules, which are straightforward.

Equipped with our individual rewriting rules (which form ) and a semantics in
which those rules operate (HLPL+, the union of HLPL and LLBC, crafted to make
HLPL a stable subset), we now prove that reduction preserves .

Theorem 2 (Eval-Preserves-HLPL+-Rel). For all ⌦l, ⌦r HLPL+ states, we have:

⌦l  ⌦r ) 8 s r⌦0r, ⌦r `hlpl+ s (r, ⌦0r))

9 ⌦0l, ⌦l `hlpl+ s (r, ⌦0l) ^ ⌦0l  ⌦0r

The proof is in Appendix C; it consists in a nested case analysis; first, for each
reduction step; then, for each  step. In particular, we use the fact that if two states
are related by one of the  rules, then the structure enforced by this rule is generally
preserved after the evaluation.

11.2.6 From HLPL+ to HLPL

HLPL+ is merely a proof device; our ultimate goal is to relate LLBC to HLPL, not
HLPL+. Because we excluded (above) from HLPL+ those rules that might create new
loans or borrows, we trivially have the fact that the semantics of HLPL and HLPL+

coincide on HLPL states (i.e., HLPL+ states that don’t contain loans or borrows, and
thus belong to the HLPL subset of HLPL+); that is, that HLPL is a stable subset
of HLPL+ in the sense of Definition 2. Some subtleties arise from the fact that we
replaced some HLPL rules with more general HLPL+ versions to account for hybrid
states, but those rules were carefully crafted to coincide on non-hybrid states; we refer
the interested reader to Appendix C for a detailed discussion.

From this we deduce that there is a forward relation from HLPL+ to HLPL:

Theorem 3 (Forward Relation for HLPL and HLPL+). For all ⌦l HLPL state, ⌦r

HLPL+ state:

⌦l  ⌦r ) 8 s r⌦0r, ⌦r `hlpl+ s (r, ⌦0r)) 9 ⌦0l, ⌦l `hlpl s (r, ⌦0l) ^ ⌦0l  ⌦0r
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11.2.7 From LLBC to HLPL+

We have just shown that the lower bound, ⌦l, remains in HLPL (by virtue of stability,
Definition 2), and therefore  can preserve the relation between HLPL and HLPL+. It
now remains to show the link between HLPL+ and LLBC, i.e., the upper bound, ⌦h,
reduces in LLBC in a way that preserves .

Because HLPL+ excludes several rules from LLBC (remember that some rules are
marked (LLBC only)), LLBC is not a subset of HLPL+, which prevents us from
deriving that result instantly. Instead, we remark that we can still reconstruct the
missing LLBC semantics using well-chosen combinations of evaluation rules from HLPL+

and refinement rules from . For instance, E-MutBorrow states that evaluating
&mut p in LLBC leads to a state with a mutable loan and a mutable borrow. We can
build the same state by using the HLPL+ rule E-Ptr to introduce a pointer and a
location, then by using Le-MutBorrow-To-Ptr to transform this state into a related
state (in the sense of ), by converting this pointer and this location to a borrow and a
loan. This means that a reduction in LLBC can always be completed to correspond
to a reduction in HLPL+, which allows us to prove the following theorem stating that,
given an LLBC state ⌦, evaluating a statement following the semantics of LLBC leads
to a state in relation with the state resulting from the HLPL+ semantics.

Theorem 4 (Eval-LLBC-Preserves-Rel). For all ⌦ LLBC state we have:

8 s r⌦r, ⌦ `llbc s (r, ⌦r)) 9 ⌦l, ⌦ `hlpl+ s (r, ⌦l) ^ ⌦l  ⌦r

Putting 3 and 4 together and using the transitivity of we finally get the preservation
theorem we were aiming at, LLBC is in forward simulation with HLPL:

Theorem 5. For all ⌦l HLPL state, ⌦r LLBC state we have:

8 s r⌦0r, ⌦r `llbc s (r, ⌦0r)) 9 ⌦0l, ⌦l `hlpl s (r, ⌦0l) ^ ⌦0l  ⌦0r

11.2.8 Form of Our Theorems

We take great care to start from any initial states ⌦l and ⌦r rather than requiring a
program execution with a closed term and with an empty state (i.e., a “main” function).
The reason is, as mentioned before, that we see the LLBC# execution as borrow-checking,
which we aim to perform modularly at the function-level granularity. This design for
our theorems will later on allow us, as we connect LLBC# all the way down to PL, to
reason about the execution of a PL function that starts in an initial state compatible
with the lifetime signature of the function in LLBC (Section 11.3.5).
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Should we wish to do so, and using the fact that empty states are in relation with
each other, we can specialize our main theorem to closed programs executing in the
empty state.

11.2.9 The Pointer Language (PL)

So far, we have only proven the central arrow of Figure 11.1. We now describe the
simulation between HLPL and PL; we do so briefly, since the techniques are standard,
and do not leverage our new proof methodology. The semantics of PL and the full
proof are in Appendix D. The PL language uses an explicit heap adapted from the
CompCert memory model; this is similar to RustBelt, except we have no extra state to
account for concurrency. As before, we retain the same syntax of programs; this is why
we can, ultimately, conclude that LLBC is a sound restriction over the execution of PL
programs.

For the proof of simulation between PL and HLPL, we have no choice but to
introduce a global map from location identifiers to concrete addresses, along with an
explicit notion of heap. In short, we adopt the traditional global-invariant style of
proof; this is the only arrow from Figure 11.1 where we cannot apply our methodology.
However, as we took care to design HLPL so that its pointers leave values in place, the
structure of HLPL states and PL states is very close; as a consequence the proof is
technical, but straightforward. It crucially leverages the fact that the rules of HLPL
were carefully crafted so that it is not possible to move a location (see the premises of
HLPL-E-Move or HLPL-E-Assign for instance), as it would break the relation between
the HLPL locations and the PL addresses. Moving up the hierarchy of languages, this
is the reason why we forbid moving outer loans in the LLBC rules, that is loans which
are not inside a borrow (see E-Assign in particular). We elide the exact statements of
the theorems, which can be found in Appendix D.

11.2.10 Divergence and Step-Indexed Semantics

The forward simulation theorem between PL and LLBC relates terminating executions.
Anticipating on the next section where we will consider LLBC# executions as borrow-
checking certificates, this gives us in particular that the existence of safe executions
for LLBC implies that the PL executions are safe. Unfortunately, as LLBC is defined
in a big-step fashion, one problem arises. Big-step semantics do not allow to reason
about programs that safely diverge, that is, programs that never get stuck or crash,
but do not terminate: these programs cannot be distinguished from stuck programs; in
both cases, no evaluation exists. This is a known problem when studying type systems;
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E-Step-Zero

⌦ ` s 
0
1

E-Step-Return

⌦ ` return  
n+1

(return,⌦)

E-Step-Seq-Unit
⌦0 ` s0  

n+1
((),⌦1) ⌦1 ` s1  

n+1
res

⌦0 ` s0; s1  
n+1

res

E-Step-Loop-Continue-Inner
⌦ ` s 

n
(continue 0, ⌦0)

⌦0 ` loop s 
n

(r, ⌦00)

⌦ ` loop s  
n+1

(r, ⌦00)

E-Step-Call
fh~_, ~⌧i = fn h~_i (�!xi : �!⌧i ) (�!yj : �!⌧j ) (xret : ⌧) { s } 8 j,⌦j ` opj ! (vj , ⌦j+1)

` push_stack

⇣
[xret ! ?] ++ [�����!xj ! vj ] ++ [

�����!
yk ! ?]

⌘
⌦m = ⌦(0)

⌦(0) ` body  
n

res res0 =

8
>>>>>><

>>>>>>:

(panic, ⌦(1)) if res = (panic, ⌦(1))

((), ⌦(3)) if res = (return, ⌦(1))^
` pop_stack ⌦(1) = (v, ⌦(2)) ^
⌦(2) ` p := v  ((), ⌦(3))

1 if res =1
⌦0 ` p := f(�!opj)  

n+1
res0

Figure 11.6: Semantics of LLBC with Step-Indexing (Selected Rules)

previously proposed workarounds include defining semantics coinductively to model
divergence [407, 408].

To avoid tricky coinductive reasoning, we instead rely on step-indexed semantics.
We present in Figure 11.6 several of the updated rules for the step-indexed LLBC. As
for related work, we add a step index to the judgment which evaluates statements
(e.g., E-Step-Seq-Unit). This step index can be seen as a standard notion of fuel [409];
when the index is equal to zero, i.e., the execution is out of fuel, we stop the evaluation
and return the 1 value (E-Step-Zero). Otherwise, when evaluating possibly non-
terminating statements (e.g., function calls as described by E-Step-Call), we decrement
the step index in the recursive evaluation (e.g., the evaluation of the function body).

Building on this semantics, we can now define the following evaluation judgment
that hides the step indices, and returns either 1 for diverging computations, or the
previously seen pair of a control flow tag and environment:

⌦ ` s 1 := 8 n,⌦ ` s 
n
1

⌦ ` s res := 9 n,⌦ ` s 
n
res ^ res 6=1
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We follow a similar approach to extend the PL and HLPL languages to model
divergence. Adapting the proofs and theorems from §Section 11.2 to the step-indexed
semantics and proving Theorem 6 is straightforward, and we omit the complete presen-
tation for brevity. The core idea is that evaluations for the same program have identical
step indices in PL, HLPL, and LLBC: the step index only decrements when entering a
function call (or a loop), which is shared across the three languages.

Theorem 6. For all ⌦l PL state and ⌦h LLBC state, we have:

⌦l  ⌦h ) 8 s, ⌦h `llbc s 1) ⌦l `pl s 1

11.3 LLBC# is a sound approximation, a.k.a., borrow-
checker for LLBC

In the previous section we have showed that LLBC is a reasonable model of execution
for Rust programs, as it can indeed be related to a traditional heap-and-addressses
model of execution. In this section, we aim to study the claim that an interpreter for
symbolic semantics, as defined by LLBC#, defines a sound borrow checker. Borrow
checking is, conceptually, similar to type checking. A sound borrow checker for LLBC
therefore ensures that, for a given program, if the borrow checker succeeds, then the
program executes safely. In our setting, the definition of the borrow checking rules
is however non-standard: instead of a set of inference rules, the borrow checker is
formalized using a symbolic semantics. Importantly, this semantics is not deterministic;
its implementation relies on several heuristics to choose the right rules to apply. This
is to be contrasted with the current implementation of borrow-checking in the Rust
compiler: while deterministic, it relies on a mostly lexical lifetime mechanism; we claim
that our approach emphasizes semantic rather than syntactic borrow-checking.

We therefore aim to establish a forward simulation from LLBC# to LLBC, that is,
that for all successful LLBC# evaluations for a given program, there exists a related,
valid execution in LLBC. By composing this property with the forward simulation
proven in the previous section, we therefore obtain that if the borrow-checker (LLBC#)
succeeds for a given program, then this program safely executes at the PL level. The
forward simulation from LLBC# to LLBC also allows us to strengthen the relation
between PL and LLBC: by definition of the simulation, successfully borrow checking
a program implies the existence of a safe LLBC evaluation, which then allows us to
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conclude that we actually have a bisimulation between PL and LLBC for programs that
pass borrow checking.

In the rest of this section, we focus on applying the proof methodology from
Section 11.1 to prove that LLBC and LLBC# admit a forward simulation. We then
show how to combine this result with the determinism of PL to obtain a bisimulation
for PL and LLBC, under successful borrow-checking.

11.3.1 Simulation Relation

Considering LLBC# as a borrow checker, we now aim to establish a property akin to
type safety. As LLBC# is defined as a semantics instead of a set of inference rules, this
corresponds to a forward simulation. We assume that programs are executing in an
environment P , which consists of a set of function definitions alongside their signature.
Formally, we aim to prove the following property:

Theorem 7. For all states ⌦ and ⌦#, statement s, and S# set of tagged states (i.e.,
pairs of a control-flow tag and a state), we have:

(8 f 2 P , borrow_checks f)) ⌦  ⌦# ) ⌦# `llbc# s S# )

(⌦ `llbc s 1) _ (9 ⌦1, ⌦ `llbc s (panic, ⌦1)) _

(9⌦1 ⌦
#
1 r 2 {(), return, break i, continue i},

⌦ `llbc s (r, ⌦1) ^ ⌦1  ⌦#
1 ^ (r, ⌦#

1 ) 2 S#)

This property should be understood as follows. We assume that all functions ap-
pearing in the environment have been borrow-checked to match their signature, as
represented by the predicate borrow_checks f ; in practice, this can be done indepen-
dently for each function, relying on the modularity of type-checking (see Section 11.3.3
below). Then for all states ⌦ in LLBC, ⌦# in LLBC# initially in relation, for all
evaluations of a program s starting from ⌦# and returning a set of abstract states
S#, there exists a related execution of s in LLBC that either diverges, panics, or
yields a result related to one of the states in S#. We note that, as in our case empty
environments are trivially in relation, we get the standard typing result, that is: given
some entry point to the program, say a fn main() function, an evaluation of the program
starting in the empty state is safe.
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11.3.2 Local Transformations

Similarly to the previous section, this proof will rely on the methodology outlined
in Section 11.1. We describe below its different components. The first step in our
methodology is to define a set of local transformations, whose reflexive transitive closure
will allow turning a concrete LLBC state into its abstract LLBC# counterpart; we
present the rules in Figure 11.8. Note that some rules of Figure 11.8 are a bit too
primitive; we will sometimes refer to rules of Figure 11.9, which can be trivially derived
from those primitive rules. Similarly to how transformations between HLPL and LLBC
led to the HLPL+ language, transformations between LLBC and LLBC# commonly
span hybrid states that do not belong to either language. We dub this hybrid, union
language LLBC+, and define transformations as operating on LLBC+ states. The
semantics of LLBC+ is almost exactly the union of LLBC and LLBC#. To ensure that
LLBC remains a stable subset of LLBC+, a key ingredient of our approach, we exclude
E-Call-Symbolic, the only rule introducing symbolic values and region abstractions;
similarly to our handling of loans and borrows in HLPL+, they will instead be introduced
through the state transformations. We of course need to generalize some of the rules
so that they work for hybrid states (Figure 11.7). We now detail several of the rules
that induce the  relation on LLBC+ states. Contrary to HLPL+ where we explained
the transformations from right to left, in the case of LLBC+ it is more natural to go
from left to right, from concrete to abstract; we adopt this convention in the rest of the
section.

Le-ToSymbolic is one of the simplest transformation rules. If we have a plain,
concrete value (i.e., that does not contain loans, borrows, or ?), then we can lose
information, and transform it into a fresh symbolic value. Le-MoveValue implements
a move: so long as no one else relies on v (as captured by the premises), v can be
moved out into an anonymous variable. Le-ToAbs captures the core rewriting to go
from LLBC to LLBC#: it allows abstracting away parts of the borrow graph by moving
borrows and loans associated to anonymous variables into fresh region abstractions.
To do so, it relies on on, which we explain below, and on the �to-abs judgement, which
transforms a (possibly complex) value v into a set of fresh region abstractions

�!
A .

The �to-abs judgment relies on [, which is plain set union. ToAbs-MutLoan simply
transfers the loan to a fresh region abstraction. Some values, such as pairs, may contain
several loan identifiers, and as such, give rise to several, independent region abstractions
(ToAbs-Pair). ToAbs-MutBorrow converts the inner borrowed value into a set of
region abstractions, computes their union, then adds the outer mutable borrow to the
result. It is particularly useful to abstract away reborrow patterns. Let us go back to
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Reorg-End-MutBorrow#
hole of ⌦[loanm `, .] not inside a borrowed value or a region abstraction

no loan, borrow
r 2 v

⌦[loanm `, borrowm ` v] ,! ⌦[v,?]

Reorg-End-SharedReservedBorrow#
hole of ⌦[.] not inside a borrowed value or a region abstraction

⌦[borrows,r `] ,! ⌦[?]

Reorg-End-Abstraction
no borrows, loans 2 �!v ,

�!
v0 �!� fresh

⌦, A {�!v ,
������!
borrow

s `,
������������!
borrow

m `0 (v0 : ⌧) } ,! ⌦,
����������!
_! borrow

s `,
����������������!
_! borrow

m `0 (� : ⌧)

E-IfThenElse-Symbolic
⌦ ` op + (v, ⌦0) v = (� : bool) _ v = loan

s ` (� : bool)

⌦0 = ⌦0[true
.
�] ⌦1 = ⌦0[false

.
�] ⌦0 ` s0  S#

0 ⌦1 ` s1  S#
1

⌦ ` if op then s0 else s1  S#
0 [ S#

1

E-Match-Symbolic
` ⌦(p)

imm) v

v = (� : ⌧0 + ⌧1) _ v = loan
s ` (� : ⌧0 + ⌧1) �0, �1 fresh ⌦0 = ⌦0[Left (�0 : ⌧0)

.
�]

⌦1 = ⌦0[Right (�0 : ⌧0)
.
�] ⌦0 ` s0  S#

0 ⌦1 ` s1  S#
1

⌦ ` (match pwith | Left ) s0 | Right ) s1) S#
0 [ S#

1

E-Seq-Symbolic
⌦ ` s0  {((),⌦i)} [ S# 8 r 2 S#, 8 ⌦, r 6= ((),⌦) 8 i, ⌦i ` s1  S#

i

⌦ ` s0; s1  S# [ ([
i
S#
i )

Copy-Symbolic
�0 fresh

` copy � = �0

Reorg-SymbolicBox
�0 fresh

⌦[� : Box ⌧ ] ,! ⌦[Box�0]

Reorg-SymbolicPair
�0, �1 fresh

⌦[� : (⌧0, ⌧1)] ,! ⌦[(�0, �1)]

Figure 11.7: Operational Semantics for LLBC#
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Le-ToSymbolic
borrows, loans, ? 62 v

� fresh

⌦[v]  ⌦[�]

Le-ToAbs
` v �to-abs

�!
A

⌦, _! v  ⌦,
�!
A

Le-MoveValue
no outer loans in v

hole of ⌦[.] not inside a shared loan or a region abstraction

⌦[v]  ⌦[?], _ 7! v

Le-ClearAbs

⌦, A {}  ⌦

Le-MergeAbs
` A0 on A1 = A

⌦, A0, A1  ⌦, A

Le-Fresh-MutLoan
` fresh

⌦[v]  ⌦[loanm `], _! borrow
m ` v

Le-Fresh-SharedLoan
` fresh

⌦[v]  ⌦[loans ` v]

Le-Reborrow-MutBorrow
`1 fresh

⌦[borrowm `0 v]  ⌦[borrowm `1 v], _! borrow
m `0 (loan

m `1)

Le-Abs-ClearValue
no borrows, loans 2 v

⌦, A [ { v }  ⌦, A

Le-Fresh-SharedBorrow

⌦[loans ` v]  ⌦[loans ` v], _! borrow
s `

Le-Reborrow-SharedLoan
A, `1, � fresh ?, loanm, borrows,r,m /2 v

⌦[loans `0 v,
������!
borrow

s `0]  ⌦[loans `1 �,
������!
borrow

s `1], A { borrow
s `1, loan

s `0 v }

Le-Abs-End-SharedLoan
⌦ = ⌦0, A[loans ` v] no borrow

s,r ` 2 ⌦

⌦  ⌦0, A[v]

Le-Abs-End-DupSharedBorrow

⌦, A [ { borrow
s `, borrows ` }  ⌦, A [ { borrow

s ` }

Le-Reborrow-SharedBorrow
?, loanm, borrows,r,m /2 v loan

s `0 v 2 ⌦[
������!
borrow

s `0] `1, �, A fresh

⌦[
������!
borrow

s `0]  ⌦[
������!
borrow

s `1], A {borrows `0, loan
s `1 � }

Le-Abs-DeconstructPair

⌦, A [ { (v0, v1) }  ⌦, A [ { v0, v1 }

Le-Abs-DeconstructSum
C 2 {Left, Right}

⌦, A [ { C v }  ⌦, A [ { v }

Le-AnonValue
no symbolic values, borrows, loans 2 v

⌦  ⌦, _! ?

Figure 11.8: The Relation  about LLBC+ States
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Le-Reborrow-MutBorrow-Abs
`1, A fresh

⌦[borrowm `0 v]  ⌦[borrowm `1 v], A { borrowm `0 _, loanm `1 }

Le-Reborrow-MutLoan-Abs
`1, A fresh

⌦[loanm `0]  ⌦[loanm `1], A { borrowm `1 _, loanm `0 }

Le-Fresh-MutLoan-Abs
`, A fresh

⌦[v]  ⌦[loanm `], A { borrowm ` v }

Le-DeconstructSharedLoans
� fresh symbolic value

⌦, A [ { V0[loan
s `0 (V1[loan

s `1 v])] }  ⌦, A [ { V0[loan
s `0 (V1[�])], loan

s `1 v }

Figure 11.9: Derived Rules for the  Relation About LLBC+ States

ToAbs-Empty
no borrows, loans 2 v

` v �to-abs ;

ToAbs-Sum
v = Left v0 _ v = Right v0 ` v0 �to-abs

�!
A

` v �to-abs
�!
A

ToAbs-Box
` v �to-abs

�!
A

` Box v �to-abs
�!
A

ToAbs-SharedBorrow
A fresh

` borrow
s ` �to-abs A{borrows `}

ToAbs-SharedLoan
A fresh

` loan
s�!` v �to-abs A{loans

�!
` v}

ToAbs-MutBorrow
no borrows, ? 2 v v �to-abs

�!
A

` borrow
m ` v �to-abs ([�!A ) [ {borrowm ` _}

ToAbs-MutLoan
A fresh

` loan
m ` �to-abs A{loanm `}

ToAbs-Pair
` vl �to-abs

�!
A l ` vr �to-abs

�!
A r

` (vl, vr) �to-abs
�!
A l,
�!
A r

Figure 11.10: Rules to Transform Values to Region Abstractions.
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MergeAbs-Union

` A0 on A1 = A0 [A1

MergeAbs-Mut
` A0 on A1 = A

` (A0 [ {loanm `}) on (A1 [ {borrowm ` _}) = A

MergeAbs-Shared
` (A0 [ {loans ` v}) on A1 = A

` (A0 [ {loans ` v}) on (A1 [ {borrows `}) = A

Figure 11.11: Rules to Merge Region Abstractions.

the reborrowing example of Section 11.2.3:

1 x = 0; // x 7! 0

2 px = &mut x; // x 7! loan
m `0, px 7! borrow

m `0 0

3 px = &mut (*px); // x 7! loan
m `0, _ 7! borrow

m `0 (loanm `1), px 7! borrow
m `1 0

4 assert!(x = 0); // x 7! 0, _ 7! ?, px 7! ?

After the reborrow (line 3) we have the state: x 7! loan
m `0, _ 7! borrow

m `0 (loan
m `1),

px 7! borrow
m `1 0. We can abstract away the link between px and x by using Le-ToAbs,

resulting in the state: x 7! loan
m `0, A { borrowm `0 _, loanm `1 }, px 7! borrow

m `1 0.
The non-deterministic on operator merges two different region abstractions using

semantic criteria. When interpreting Rust programs, a region abstraction can be
understood as a set of values associated to a given lifetime. Merging two region
abstractions therefore corresponds to a notion of lifetime weakening: if we have two
distinct lifetimes, Rust allows adding lifetime constraints to guarantee that borrows
associated to both lifetimes will be ended at the same time. This pattern frequently
occurs when typechecking a function body against a more restrictive lifetime signature.

A naive, but sound interpretation of merging regions A0 and A1 consists of taking
the union of all values in both regions using rule MergeAbs-Union. However, we can
also perform more precise transformations, for instance by removing a mutable loan
and its associated borrow (MergeAbs-Mut). Intuitively, this rule allows hiding them
in the internals of the region abstraction: ending the merged abstraction amounts, in
the original state, to ending the first abstraction, all the borrows and loans that were
hidden by means of MergeAbs-Mut, then the second abstraction; in the state resulting
from the merge, we simply abstract all those steps away.

In practice, we devise an algorithm to judiciously apply the on rules. Indeed,
greedily applying MergeAbs-Union instead of leveraging MergeAbs-Mut creates an
abstraction which contains both a loan and its associated borrow; we can never end
such abstractions because of a cyclic dependency between ending the abstraction
and ending the borrow, eventually leading the symbolic evaluation to get stuck. We
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borrow_checks (fn h�!⇢ i (�!x : �!⌧ ) (�!y :
�!
⌧ 0 ) (xret : ⌧ret) { s }) :=

let ~v,
����!
Ain(⇢) = init(~⇢,~⌧)

let ⌦#
0 =

����!
Ain(⇢),

���!x! v,
����!
y ! ?, xret ! ?

let vout,
����!
Asig(⇢) = final(~⇢,~⌧ , ⌧ret)

let ⌦#
1 =

����!
Asig(⇢),

����!
x! ?,

����!
y ! ?, xret ! vout

9 S#, ⌦#
0 `llbc# s S# ^

8 res 2 S#, 9 ⌦#, res = (panic, ⌦#) _ (res = (return, ⌦#) ^ ⌦#  ⌦#
1 )

Figure 11.12: The Borrow Checking Predicate For Functions

emphasize that on is not symmetric: MergeAbs-Mut is directed, and there is no
version of it with a borrow on the left, and a loan on the right. This is necessary
for soundness. Consider environments A0 = {borrowm `2 v, loan

m `0, borrow
m `1 v1}

and A1 = {loanm `1, borrow
m `0 v0}. This symbolic state features a cyclic dependency

(perhaps, because of poorly chosen uses of Le-MergeAbs) – it is thus crucial, for our
proof of forward simulation, to make sure that such a symbolic state remains stuck.
The directionality of MergeAbs-Mut guarantees just that: it allows terminating `0,
but not `1, and rightfully prevents borrow-checking from succeeding.

Building on the transformations previously presented, we now focus on the simulation
proof itself. As outlined in Section 11.1, the proof can be broken down in three steps:
we need to establish a forward simulation on LLBC+, prove that LLBC is a stable
subset of LLBC+, and conclude by reasoning on the remaining rules in LLBC# that
were excluded from LLBC+.

The second point can be easily obtained by induction on an LLBC+ evaluation. The
first point is tedious, but straightforward and similar to the proof between HLPL and
LLBC. The core idea is that the local transformations turn a state into a more abstract
version, thus allowing fewer execution steps. Compared to HLPL+, the novel part of
the proof is the third point, which requires relating an abstract, modular execution
of a function call (E-Call-Symbolic, Figure 11.7) to its concrete counterpart which
enters the function body (E-Step-Call, Figure 11.6). Before doing so, we focus briefly
on how exactly symbolic execution works, and show how to modularly borrow-check a
function in LLBC#.

11.3.3 Borrow-Checking a Program

The actual setup of the symbolic execution is performed by borrow_checks (Figure 11.12).
The init function (Figure 11.13), given the types of the arguments ~⌧ , initializes a set of
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Init
8 i, init_extern ~⇢ ⌧i =

����!
Aext

i (⇢)

8 i, proj_output ~⇢ ⌧i = (vi,
����!
Aout

i (⇢))
8 ⇢, A(⇢) = [

i

�
Aext

i (⇢) [Aout

i (⇢)
�

init (~⇢, ~⌧) = (�!vi ,
��!
A(⇢))

Final
8 i, init_extern ~⇢ ⌧i =

����!
Aext

i (⇢)

proj_output ~⇢ ⌧ = (v,
����!
Aout(⇢))

8 ⇢, A(⇢) = Aout(⇢) [
✓
[
i
Aext

i (⇢)

◆

final (~⇢, ~⌧ , ⌧) = (v,
��!
A(⇢))

Figure 11.13: Init and Final LLBC# States for Borrow-Checking

InitExtern-Symbolic
no borrows 2 ⌧ 8 ⇢, A⇢ = {}

init_extern ~⇢ ⌧ =
��!
A(⇢)

InitExtern-Pair
init_extern ~⇢ ⌧0 =

���!
A0(⇢)

init_extern ~⇢ ⌧1 =
���!
A1(⇢)

8 ⇢, A(⇢) = A0(⇢) [A1(⇢)

init_extern ~⇢ (⌧0, ⌧1) =
��!
A(⇢)

InitExtern-Shared
no borrows 2 ⌧ ` fresh

A(⇢) = { borrow
s ` } 8 ⇢0 6= ⇢, A(⇢0) = {}

init_extern ~⇢ (&⇢ ⌧) =
��!
A(⇢)

InitExtern-Mut
no borrows 2 ⌧ ` fresh

A(⇢) = { borrow
m ` _ } 8 ⇢0 6= ⇢, A(⇢0) = {}

init_extern ~⇢ (&⇢mut ⌧) =
��!
A(⇢)

Figure 11.14: Generating the External Borrows for State Initialization
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input values ~v by allocating fresh symbolic values and borrows, along with an initial set
of region abstractions

���!
Ain(⇢) which contain their associated loans, and materialize the

signature and its lifetimes; this then serves to create the initial symbolic environment
⌦#

0 , where the input parameters are initialized with ~v, and where the remaining local
variables and the special return variable are uninitialized. Symmetrically, ⌦#

1 captures
the expected region abstractions upon exiting the function, and states that all that
matters is that the return value points to a symbolic variable. The function then
borrow-checks if executing the body s in ⌦#

0 is safe, and leads to states which either
panic or are in relation with ⌦#

1 .
We illustrate borrow-checking on the choose function, below. The init function

computes an initial state that corresponds to the function signature, lines 2-3. The
function has no local variables, so the ~y from borrow_checks are absent. The return
value is uninitialized (line 3).

In this state, the variable b contains a symbolic value �b, while x and y borrow some
other symbolic values, their associated loans being placed in a region abstraction Ain

which holds all the loans of lifetime ↵; as choose has only one lifetime, the initial state
holds a unique region abstraction. Importantly, Ain also contains some borrows `(0)x and
`(0)y , whose corresponding loans are in an unspecified place (i.e., not in the current state).
As such, this initial state is a partial state that can be composed with other partial
states to form a complete state, where in particular all borrows have an associated loan;
we will use this in the proof of the forward simulation, by applying framing lemmas in
the same spirit as the frame rule in separation logic [410]. In this context, Ain really
acts as an abstraction barrier between the local state (the callee) and some external
state (the caller); intuitively, `(0)x should be exactly `x while `(0)y should be exactly `y,
but we abstracted this information away.

1 fn choose<'a, T>(b : bool, x : &'a mut T, y : &'a mut T) -> &'a mut T {
2 // Ain { borrowm `(0)x _, borrowm `(0)y _, loanm `x, loan

m `y },
3 // b 7! �b, x 7! borrow

m `x �x, y 7! borrow
m `y �y, xret 7! ?

4 if b { ret := move x;
5 // Ain { borrowm `(0)x _, borrowm `(0)y _loan

m `x, loan
m `y },

6 // b 7! true, x 7! ?, y 7! borrow
m `y �y, xret 7! borrow

m `x �x

7 return;
8 //  Aout { borrowm `(0)x _, borrowm `(0)y _, loanm ` },
9 // b 7! ?, x 7! ?, y 7! ?, xret 7! borrow

m ` �

10 } else { ret := move y; return; } }

Upon reaching the return, symbolic execution yields the state at lines 5-6, where the
special return value variable ret now contains the borrow coming from x. We show at
lines 8-9 the target output state, computed via final (Figure 11.13): the goal is now to
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establish that the final environment (as computed by the symbolic execution) refines
the output environment (as determined by the function signature).

We first reorganize the context by ending all the outer loans (loans which are
themselves not inside borrows) which we see in local variables. We then repeat-
edly compare the two states while applying  rules until they match: we move the
values contained by the local variables (except ret) into fresh region abstractions
(Le-MoveValue), transform the values contained by the return variable ret into sym-
bolic values (Le-ToSymbolic), and merge region abstractions together (Le-MergeAbs).
We end up in the target state of lines 8-9; we then do the same for the else branch
(omitted), which allows us to conclude that choose satisfies its signature. In other words,
choose borrow-checks.

11.3.4 Forward Simulation Between LLBC+ and LLBC#

We now resume the presentation of the proof of the simulation between LLBC and
LLBC#: there remains to show that we can replace E-Call with E-Call-Symbolic.
There are several crucial points. First, evaluation rules are local, which means the
evaluation relation is also defined for partial states in which borrows don’t necessarily
have an associated loan; equipped with partial states, we define and prove a framing
lemma in the spirit of separation logic, which states that if state ⌦#

0 evaluates to
⌦#

1 , we can compose ⌦#
0 with a disjoint frame ⌦#

f which doesn’t get modified during
the evaluation. As the  rules are also local, we define a similar framing property
for the  relation. Finally, we carefully designed E-Call, E-Call-Symbolic and the
borrow_checks predicate so that: 1. we can always turn a part of the concrete input
state into a more abstract partial state that is in relation with ⌦#

0 ; 2. the conclusion of
borrow_checks gives us exactly the partial state we need to get the state resulting from
E-Call-Symbolic by applying the frame rules. There are some other technicalities; we
refer the interested reader to the Appendix.

11.3.5 Backward Simulation From LLBC to PL

The forward simulation from LLBC# to LLBC allows us to conclude about the soundness
of LLBC# as a borrow-checker. However, it also guarantees the existence of a backward
simulation between LLBC and PL for programs that successfully borrow-check; we
formalize this in Theorem 8. This theorem states that, assuming that all functions
in program P borrow-check, and that the state ⌦llbc is in relation with the initial
borrow-checking state ⌦#

0 for function g, then any PL execution of g starting from a
related state ⌦pl has a related LLBC execution. Combined with the forward simulation
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from LLBC to PL proven in Section 11.2, this provides the main result of our paper:
we have a bisimulation relation between LLBC and PL for programs that borrow-check.

Theorem 8 (Backward Simulation Between PL and LLBC). For all ⌦pl PL state and
⌦llbc LLBC state, for all function gh~⇢, ~⌧i, we have:

let ~v,
���!
Ain(⇢) = init(~⇢,~⌧); let ⌦#

0 =
���!
Ain(⇢),

���!x! v,
����!
y ! ?, xret ! ?;

(8 f 2 P , borrow_checks f)) ⌦pl  ⌦llbc ) ⌦llbc  ⌦#
0 ) 8 res, ⌦pl ` g.body res)

9 res0, ⌦llbc ` g.body res0 ^

(res = res0 =1) _ (9 r ⌦pl
1 ⌦llbc

1 , res = (r, ⌦pl
1 ) ^ res0 = (r, ⌦llbc

1 ) ^ ⌦pl
1  ⌦llbc

1 )

Building on the previous sections, the proof is straightforward: if all functions in
program P borrow-check, so does g, which by definition means that there exists an
LLBC# evaluation of g.body starting from ⌦#

0 . By forward simulation, this implies the
existence of an LLBC evaluation starting from ⌦llbc and returning a result resllbc, which
in turn implies the existence of a related PL evaluation starting from ⌦pl and returning
respl. As PL is deterministic, we derive res = respl for any PL execution starting from
⌦pl, and conclude by exhibiting the witness res0 = resllbc.



Chapter 12

Joins and Loops

In the previous chapter we proved that the symbolic execution defined by LLBC#

can be used to provably implement a borrow-checker. We are now ready to lift the
restrictions we imposed on LLBC# for loops and branchings (Chapter 10).

More precisely, equipped with a framework in which to reason about the soundness
of LLBC# with regards to LLBC, we define and prove correct a new operation that
was previously missing from LLBC#: the join operation, which can reconcile two
branches of control-flow (Section 12.1). Inspired by joins in abstract interpretation (and
specifically, joins in shape analysis), this new operation gives us a symbolic interpreter
(i.e., a borrow-checker) that can handle loops (Section 12.2), and does not exhibit
pathological complexity on conditionals. Furthermore, our support naturally extends to
the functional translation, meaning that Aeneas now supports verification of loops. We
leave a discussion of the correctness of the Aeneas functional translation to future work.

We evaluate the effectiveness of our join operation (Chapter 14), specifically when
used to compute shape fixed-points for loops, over a series of small examples and case
studies. We find that, in spite of being (naturally) incomplete, our join operation
handles a wide range of examples. Our interpretation is that because Rust imposes so
many invariants, a join procedure can leverage this structure and fare better than, say,
a general-purpose join operation for analyzing C programs.

As we saw in the previous section, LLBC# offers a sound, modular borrow checker
for the LLBC semantics. However, its approach based on a symbolic collecting semantics
struggles with scalability when considering disjunctive control flow. Consider the rule
E-IfThenElse-Symbolic, which defines the LLBC# semantics for evaluating common
if-then-else constructs. This rule evaluates both branches independently, yielding sets
of tagged states S#

0 and S#
1 , and finally returns their union; each state in the resulting

set is then considered as a starting point to evaluate the rest of the program. When a
program contains many branching constructs, this leads to a combinatorial explosion

213



214 Joins and Loops

known to symbolic execution practitioners as the path explosion problem. This issue
becomes even worse when considering loops, as the number of paths to analyze can be
infinite.

To circumvent this issue, one possible solution is to merge control flow paths at
different program points, typically after the end of a branching statement. Doing
so requires soundly merging environments or, borrowing terminology from abstract
interpretation, “computing a join” [171]. In this section, we show how to define such an
operator for abstract, borrow-centric environments. Leveraging the forward simulation
from LLBC# to LLBC, we then prove its soundness with respect to the LLBC semantics.

12.1 Joining Environments

We present in Figure 12.1 and Figure 12.2 the rules for our join operator. To make the
presentation easier to follow, we will rely on the following small example, which is a
standard Rust pattern after desugaring. We annotate this program with the LLBC#

environments at relevant program points.

// b 7! (�0 : bool)

x = 0;
y = 1;
px = &mut x;
py = &mut y;
// b 7! (�0 : bool), x 7! loan

m `0, y 7! loan
m `1,

// px 7! borrow
m `0 0, py 7! borrow

m `1 1

if b {
p = move px;
// b 7! true, x 7! loan

m `0, y 7! loan
m `1,

// px 7! ?, py 7! borrow
m `1 1, p 7! borrow

m `0 0

} else {
p = move py;
// b 7! false, x 7! loan

m `0, y 7! loan
m `1,

// px 7! borrow
m `0 0, py 7! ?, p 7! borrow

m `1 1

}

Our goal is to compute the join of the environments after evaluating both branches.
Formally, we write ⌦, ⌦0 ` join⌦ ⌦0 ⌦1  ⌦2 to denote that the join of environments
⌦0 and ⌦1 yields a new environment ⌦2. We define the join operator inductively on
the environments. The states ⌦ and ⌦0 on the left of the turnstile correspond to the
top-level environments being joined, which might differ from ⌦0 and ⌦1 inside recursive
derivations. A few specific rules in our complete presentation require access to them,
but they can be safely ignored in this section.
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Join-Same

⌦0, ⌦1 ` joinv v v + v | ;

Join-Symbolic
no borrows, loans, ? 2 v0, v1

� fresh
⌦0, ⌦1 ` joinv v0 v1 + � | ;

Join-Bottom-Other
no outer loan 2 v

` v �to-abs �!A

⌦0, ⌦1 ` joinv ? v + ? |
�!
A

Join-Other-Bottom
no outer loan 2 v

` v �to-abs �!A

⌦0, ⌦1 ` joinv v ? + ? |
�!
A

Join-MutBorrows
`2, A

0 fresh ⌦0, ⌦1 ` joinv v0 v1 + v2 | �!A
⌦0, ⌦1 ` joinv (borrowm `0 v0) (borrow

m `1 v1) + borrow
m `2 v2 |

A0 { borrow
m `0 _ , borrow

m `1 _ , loanm `2 },
�!
A

Join-SharedBorrows
`2, �, A fresh no loan

m , borrow, ? 2 v0, v1
loan

s `0 v0 2 ⌦0 loan
s `1 v1 2 ⌦1

⌦0, ⌦1 ` joinv (borrows `0) (borrow
s `1) +

borrow
s `2 |

A { borrow
s `0 , borrow

s `1 , loan
s `2 � }

Join-MutLoans
`2 fresh

⌦0, ⌦1 ` joinv (loanm `0) (loan
m `1) + loan

m `2
| A { borrowm `2 _, loan

m `0 , loan
m `1 }

Join-SharedLoans
no mut loan, borrow, ? 2 v0, v1 `2, �, A fresh

⌦0, ⌦1 ` joinv (loans `0 v0) (loan
s `1 v1) +

loan
s `2 � | A { borrows `2, loan

s `0 v0 , loan
s `1 v1 }

Join-MutLoan-Other
`0 fresh ` borrow

m `0 v �to-abs �!A
⌦0, ⌦1 ` joinv (loanm `) (loanm `0) + v0 |

�!
A0

⌦0, ⌦1 ` joinv (loanm `) v + v0 | �!A ,
�!
A0

Join-Other-MutLoan
`0 fresh ` borrow

m `0 v �to-abs �!A
⌦0, ⌦1 ` joinv (loanm `0) (loanm `) + v0 |

�!
A0

⌦0, ⌦1 ` joinv v (loanm `) + v0 | �!A ,
�!
A0

Join-SharedLoan-Other
`0 fresh

⌦0, ⌦1 ` joinv (loans ` v0) (loan
s `0 v1) + v2 | �!A

⌦0, ⌦1 ` joinv (loans ` v0) v1 + v2 | �!A

Join-Other-SharedLoan
`0 fresh

⌦0, ⌦1 ` joinv (loans `0 v0) (loan
s ` v1) + v2 | �!A

⌦0, ⌦1 ` joinv v0 (loans ` v1) + v2 | �!A

Join-Tuple
⌦0, ⌦1 ` joinv v0 v1 + v | �!A0

⌦0, ⌦1 ` joinv w0 w1 + w | �!A1

⌦0, ⌦1 ` joinv (v0, w0) (v1, w1) +
(v, w) | �!A 0,

�!
A 1

Join-Sum
⌦0, ⌦1 ` joinv v0 v1 + v | �!A

C = Left _ C = Right

⌦0, ⌦1 ` joinv (C v0) (C v1) + C v | �!A

Join-Box
⌦0, ⌦1 ` joinv v0 v1 + v | �!A

⌦0, ⌦1 ` joinv (Box v0) (Box v1) + Box v | �!A

Join-Same-MutBorrow
⌦0, ⌦1 ` joinv v0 v1 + v2 | �!A

⌦0, ⌦1 ` joinv (borrowm ` v0) (borrow
m ` v1)

+ borrow
m ` v2 | �!A

Join-Same-SharedLoan
no ? 2 v0, v1

⌦0, ⌦1 ` joinv v0 v1 + v2 | �!A
⌦0, ⌦1 ` joinv (loans ` v0) (loan

s ` v1)

+ loan
s ` v2 | �!A

Figure 12.1: Join (Values)
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Join-Same-Abs
⌦0, ⌦1 ` join⌦ ⌦00 ⌦

0
1  ⌦2

⌦0, ⌦1 ` join⌦ (A, ⌦00) (A, ⌦
0
1) A, ⌦2

Join-AbsLeft
A /2 ⌦1 ⌦0, ⌦1 ` join⌦ ⌦00 ⌦

0
1  ⌦2

⌦0, ⌦1 ` join⌦ (A, ⌦00) ⌦
0
1  A , ⌦2

Join-Same-Anon
⌦0, ⌦1 ` join⌦ ⌦00 ⌦

0
1  ⌦2

⌦0, ⌦1 ` join⌦ (_! v, ⌦00) (_! v, ⌦01) _! v, ⌦2

Join-AbsRight
A /2 ⌦0 ⌦0, ⌦1 ` join⌦ ⌦00 ⌦

0
1  ⌦2

⌦0, ⌦1 ` join⌦ ⌦00 (A, ⌦
0
1) A , ⌦2

Join-Var
⌦0, ⌦1 ` joinv v0 v1 + v2 |

�!
A ⌦0, ⌦1 ` join⌦ ⌦00 ⌦

0
1  ⌦2

⌦0, ⌦1 ` join⌦ (x! v0, ⌦
0
0) (x! v1, ⌦

0
1) x! v2,

�!
A, ⌦2

Join-Empty

⌦0, ⌦1 ` join⌦ ; ; ;

Figure 12.2: Join (Environments)

Collapse-Merge-Abs
` A0 on A1 = A

⌦, A0, A1 & ⌦, A

Collapse-Dup-MutBorrow

⌦, A [ { borrow
m ` _ , borrow

m ` _ }
& ⌦, A [ { borrowm ` _ }

Collapse-Dup-MutLoan

⌦, A [ { loan
m ` , loan

m ` }
& ⌦, A [ { loanm ` }

Collapse-Dup-SharedBorrow

⌦, A [ { borrow
m ` , borrow

m ` }
& ⌦, A [ { borrowm ` }

Collapse-Dup-SharedLoan
no borrows, loans, ? 2 v0, v1

v2 =

(
v0 if v1 = v0
� where � fresh otherwise

⌦, A [ { loan
s ` v0 , loan

s ` v1 }
& ⌦, A [ { loans ` v2 }

MergeAbs-Mut-MarkedLeft
` A0 on A1 = A

` (A0 [ { loanm ` }) on (A1 [ { borrowm ` _ }) = A

MergeAbs-Shared-MarkedLeft
` (A0 [ {loans ` v}) on A1 = A

` (A0 [ { loans ` v}) on (A1 [ { borrows ` }) = A

MergeAbs-Mut-MarkedRight
` A0 on A1 = A

` (A0 [ { loanm ` }) on (A1 [ { borrowm ` _ }) = A

MergeAbs-Shared-MarkedRight
` (A0 [ {loans ` v}) on A1 = A

` (A0 [ { loans ` v}) on (A1 [ { borrows ` }) = A

Figure 12.3: Collapse
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12.1.1 Joining Values

Joins are computed pointwise: if a variable x is present in both environments, we
perform a join on its associated value (Join-Var). Value joins are formally defined
using the judgement ⌦0, ⌦1 ` joinv v0 v1 + v | �!A . This judgment is similar to the
environment join above: it states that merging values v0 and v1 yields a new value v,
and creates a set of region abstractions

�!
A to be added to the current environment.

When values are the same, for instance x and y in our example above, the join is the
identity (Join-Same). When values differ but do not contain borrows, loans, or ?, e.g.,
variable b, a fresh symbolic value is returned (Join-Symbolic).

The more interesting cases occur when borrows or loans are involved. In the example
above, let us look at the variable p, which corresponds to a mutable borrow in both
branches, although associated to loan identifiers `0, `1 and values 0, 1 respectively. A
naive way to join these borrows would be to create a new borrow associated to a fresh
loan identifier `2 and a fresh symbolic value �, and to constrain `2 to end whenever trying
to end either `0 or `1; this can be done by creating a fresh region abstraction containing
borrow

m `0 0, borrow
m `1 1, and loan

m `2. This attempt unfortunately does not work in
practice, as it might lead to invalid states containing duplicated mutable borrows: coming
back to our example, the left environment still contains borrow

m `1 1 associated to y.
To fix this issue, we additionally keep track of the origin of values (Join-MutBorrows).
For presentation purposes, we will denote a value v coming from the left (resp. right)
environment as v (resp. v ). We follow a similar approach to join a value with ?,
e.g., for variables px and py (Join-Bottom-Other, Join-Other-Bottom), ultimately
leading to the joined environment below.

x 7! loan
m `0, y 7! loan

m `1,

px 7! ?, A0 { borrow
m `0 _ }, py 7! ?, A1 { borrow

m `1 _ },

p 7! borrow
m `2 �, A2 { borrow

m `0 _ , borrow
m `1 _ , loanm `2 }

12.1.2 Collapsing Environments

While keeping track of the origin of values avoids inconsistencies due to duplicated
borrows, it gives rise to new environments that do not belong to LLBC#. Instead
of extending the semantics, we propose a set of local transformations that gradually
turns an environment with marked values (e.g., v ) back into an LLBC# state. We dub
their transitive closure the collapse operator, which we denote &, and show its rules in
Figure 12.3.

Coming back to our running example, we aim to collapse the joined environment
to remove all markers. To do so, we first apply Collapse-Merge-Abs twice to merge
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abstractions A0, A1, and A2, using the merge rules seen in Section 11.3.1. We finally use
Collapse-Dup-MutBorrow twice to simplify borrow

m `0 _ and borrow
m `0 _ into

borrow
m `0 _, then borrow

m `1 _ and borrow
m `1 _ into borrow

m `1 _ to obtain the
following LLBC# environment.

x 7! loan
m `0, y 7! loan

m `1, px 7! ?, py 7! ?,

p 7! borrow
m `2 �, A3 { borrowm `0 _, borrowm `1 _, loanm `2 }

12.1.3 Soundness

We now set our sights on proving the soundness of the join and collapse operators.
Formally, we aim to prove the following theorem, which states that for any LLBC#

states ⌦l, ⌦r, if the composition of join and collapse yields an LLBC# state ⌦c, that is,
a state with no marked values, then this state is related to both ⌦l and ⌦r. We can
then resume the evaluation with the joined state, instead of the set of states resulting
from the two branches.

Theorem 9 (Join-Collapse-Le). For all ⌦l, ⌦r, ⌦j, ⌦c we have:

⌦l, ⌦r ` join⌦ ⌦l ⌦r  ⌦j )

` ⌦j & ⌦c )

no marked value in ⌦c )

8 m 2 {l, r}, ⌦m  ⌦c

The proof is in Appendix G and relies on an induction on the reductions for join and
collapse. To explain the intuition behind the proof, we will consider state projections
keeping marked values from only one side. For presentation purposes, we will focus
on the environment on the left. The state projection is then defined as discarding all
values from the right side (e.g., v ) and removing the left markers (e.g., replacing v by
v). Then, the intuition is that the left environment will always be in relation with the
left projection of the join. Using this notion of projection, there is almost a one-to-one
mapping between the rules defining join and collapse on one side, and the rules defining
the  relation on the other. For instance, applying the left projection to the conclusion
of Join-MutBorrows yields exactly Le-Reborrow-MutBorrow-Abs.

One important point of this soundness theorem is that it requires that the result of
collapse does not contain any marked value; in our implementation of these rules, we
rely on several heuristics to find a derivation satisfying this condition, and raise an error
when unsuccessful. As we will see in Chapter 14, while incomplete, these heuristics are
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sufficient to cover a large subset of Rust.

12.2 Extending Support to Loops

The join and collapse operator we presented allows us to handle disjunctive control
flow without leading to an explosion in the number of states to consider. While the
presentation focused on simple branching, i.e., merging two environments after an
if-then-else statement, this approach also applies to more complex constructs, such as
loops.

12.2.1 A Toy Example

As a first example, consider the toy program below which iteratively increments variable
x through its mutable borrow p. While this program is purposedly simple, its reborrow
inside a loop is a characteristic pattern when iterating over recursive data structures in
Rust; we provide a more realistic example in the next section (Section 12.2.2).

x = 0; p = &mut x; // x 7! loan
m `0, p 7! borrow

m `0 0

loop {
p = &mut (*p); // x 7! loan

m `0, _ 7! borrow
m `0 (loanm `1), p 7! borrow

m `1 0

*p += 1; // x 7! loan
m `0, _ 7! borrow

m `0 (loanm `1), p 7! borrow
m `1 1

continue; }

To borrow-check this loop, our goal is to derive a state general enough to encompass
all possible states upon entering the loop; this is known as computing a fixed-point
in program analysis. Unfortunately, our example shows that using state inclusion to
determine if a given state is a fixed-point is not sufficient. Starting from a hypothetical
fixed-point, executing the loop body will create a new loan identifier and an anonymous
mapping during the reborrow, which after joining with the initial environment will
yield new region abstractions. Our main observation is that it is actually sufficient to
consider a fixed-point up to loan and region identifier substitution. The intuition is
that, seeing LLBC# states as shape graphs [411, 412], the substitutions correspond to
graph isomorphisms, which preserve the semantics of a program.

Additionally, compared to arbitrary joins, loops follow a generic pattern. The loop
body possibly introduces fresh borrows and anonymous mappings, before being merged
with an earlier snapshot. To compute a fixed-point according to the LLBC# semantics,
we therefore rely on several heuristics. First, we convert all fresh anonymous mappings
to region abstractions using Le-ToAbs. Second, we flatten the environment by merging
freshly introduced region abstractions that contain related borrows and loans, that
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is, values associated to the same loan identifier. We finally apply the join operator
presented in the previous section to the resulting state and the initial environment, and
repeat this approach until we find a fixed-point. In our example, we get the environment
below, which remains the same after executing the loop body, up to substitution of `2
and A2 by fresh identifiers.

x 7! loan
m `0, A2 { borrowm `0 _, loanm `2 }, p 7! borrow

m `2 �

Note that, while conceptually similar to widening operators in abstract interpretation,
we do not claim that our approach terminates. Our implementation of LLBC# fails
if the fixed-point computation does not converge after a fixed number of steps. In
practice, we however observe that these heuristics are sufficient to handle a wide range
of examples, as we demonstrate in the next section; in those examples the computation
actually converges in one step.

12.2.2 An Example with a Recursive Data Structure

We now describe a more realistic example which uses a recursive data-structure. In
this example, we recursively dive into a list so as to get a mutable borrow to its last
element. We could then use this borrow to append another list, for instance. We
define the type list as: List ⌧ := µX. () + (⌧, BoxX). We also pose Nil := Left () and
Consx t := Right (x, Box t) as syntactic shortcuts. We start in an environment where l0
maps to a symbolic value �0 : List ⌧ .

// l0 7! (�0 : List ⌧)

l = &mut l0;
// l0 7! loan

m `0,

// l 7! borrow
m `0 �0

loop {
match *l {

Nil => {
// l0 7! loan

m `0,

// l 7! borrow
m `0 Nil

break; // No need to compute a join here

}
Cons => {

// l0 7! loan
m `0,

// l 7! borrow
m `0 (Cons�1 �2)

l = &mut (*(*l as Cons).1);
// l0 7! loan

m `0,

// _ 7! borrow
m `0 (Cons�1 loan

m `1),

// l 7! borrow
m `1 �2
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continue; // We join with the environment at the entry of the loop

} } }

At the continue, we convert the anonymous value to a region abstraction (with
Le-ToAbs, ToAbs-MutBorrow, ToAbs-Sum, ToAbs-Box, ToAbs-MutLoan). We
join the environment at the entry of the loop with the environment at the continue.
There is nothing to do for l_0 because its value is unchanged (we use . Join-Same).
For A0 we use Join-AbsRight. Finally, for l we use Join-MutBorrows. We get:

l0 7! loan
m `0,

A0 { borrow
m `0 _ , loan

m `1 },

l 7! borrow
m `2 �3

A1 { borrow
m `0 _ , borrow

m `1 _ , loanm `2 }

We collapse the environment by merging A0 and A1. By MergeAbs-Mut-MarkedLeft

we simplify loan
m `1 and borrow

m `1 _ . We then use Collapse-Dup-MutBorrow

to simplify borrow
m `0 _ and borrow

m `0 _ into borrow
m `0 _. We get the following

environment, which is a fixed-point.

l0 7! loan
m `0,

A2 { borrowm `0 _, loanm `2 }

l 7! borrow
m `2 �3





Chapter 13

From Symbolic Semantics to
Functional Code

At last, we explain how Aeneas, using the symbolic semantics, generates a pure
translation of the original LLBC program. We first show examples, then present the
rules.

13.1 Translation Example: call_choose

As a starting example, we consider the translation of the call_choose function below,
now presented in LLBC syntax with explicit writes and moves, along with a fully-explicit
return variable x_ret.

1 fn call_choose(mut p : (u32, u32)) -> u32 {
2 let px = &mut p.0;
3 let py = &mut p.1;
4 let pz = choose(true, move px, move py);
5 *pz = *pz + 1;
6 x_ret = move p.0;
7 return;
8 }

The translation of the forward function is carried out by performing a symbolic execution
on call_choose, and synthesizing an AST in parallel to reflect the effect of applying the
symbolic execution rules.

A key insight about our synthesis rules is that they are exclusively concerned with
symbolic values; the actual variables from the source program (x 7! . . . ) are mere
book-keeping devices and have no relevance to the translated program. Symbolic values

223
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�, however, cannot be determined statically; they thus compute at run-time, and as
such are let-bound in the target program.

We start the translation by initializing an environment (Synth), where p maps to
a symbolic value �0; as the function does not contain regions, we do not introduce
region abstractions. In parallel, we synthesize the function as an AST with a hole to
be progressively filled as we make progress throughout the translation. We present
both environment and translation side-by-side to reflect the fact that they both make
progress in parallel. We point, whenever possible, to the specific rules that apply; these
pointers can be skipped upon a first reading, but might prove useful later, once the
reader has encountered the formal definition of the translation.

p 7! (�0 : (u32, u32)) def call_choose (s0 : (U32 × U32)) :
Result U32 := do
[.]

At line 2, accessing field 0 requires us to expand �0; we first do so, which leads to the
introduction of a let-binding in the translation (Synth-Reorg-SymbolicPair).

p 7! (�1 : u32,�2 : u32) def call_choose (s0 : (U32 × U32)) :
Result U32 := do
let (s1, s2) := s0
[.]

The expansion above allows us to evaluate the two mutable borrows on lines 2-3 via
E-MutBorrow. Importantly, borrows and assignments just lead to bookkeeping in the
environment: the synthesized translation is left unchanged. We get the following:

p 7! (loanm `1, loan
m `2)

px 7! borrow
m `1 (�1 : u32)

py 7! borrow
m `2 (�2 : u32)

def call_choose (s0 : (U32 × U32)) :
Result U32 := do
let (s1, s2) := s0
[.]

We then reach the function call at line 4. To account for the call, we do several things
(Synth-E-Call). As before (Section 10.1), we introduce a region abstraction to account
for ↵, transfer ownership of the effective arguments to the abstraction, then introduce a
fresh mutably borrowed value borrow

m `3 (�3 : u32) to account for the returned value
stored in pz. We also attach a continuation to the region abstraction A(↵) (inside
the J...K, in the environment) that we will use in the translation upon ending A(↵).
This continuation is simply the backward function of choose; we use a special notation
to indicate that it consumes the value retrieved upon ending `3 (i.e., � `3 ) ...) and
produces the values to give back to `1 and `2 (i.e., (`1, `2) : ...).

In parallel, we introduce a call to choose in the synthesized translation. As previously
mentioned, the borrow types are translated to the identity; the input arguments of
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choose are thus simply s1 and s2, while choose simply outputs s3, together with the
backward function back. Our translation is monadic, meaning we obtain:

p 7! (loanm `1, loan
m `2)

px 7! ?
py 7! ?

A(↵){
_,

borrow
m `1 (�1 : u32),

borrow
m `2 (�2 : u32),

loan
m `3,

}J (`1, `2) : � `3 ) back `3 K

pz 7! borrow
m `3 (�3 : u32)

def call_choose (s0 : (U32 × U32)) :
Result U32 := do
let (s1, s2) := s0
let (s3, back) ← choose true s1 s2
[.]

We can now symbolically execute the increment, which merely introduces an addition
and generates a fresh variable �4:

p 7! (loanm `1, loan
m `2)

px 7! ?
py 7! ?

A(↵){
_,

borrow
m `1 (�1 : u32),

borrow
m `2 (�2 : u32),

loan
m `3,

}J (`1, `2) : � `3 ) back `3 K

pz 7! borrow
m `3 (�4 : u32)

def call_choose (s0 : (U32 × U32)) :
Result U32 := do
let (s1, s2) = s0
let (s3, back) ← choose true s1 s2
let s4 ← s3 + 1
[.]

Finally, the move at line 6 requires retrieving the ownership of p.0. Doing so requires
ending the region abstraction A(↵) (introduced by the call to choose), which in turns
requires ending the loan inside the abstraction (Synth-Reorg-End-MutBorrow-Abs).
Accordingly, we first end `3 which leads to the environment below. Importantly, we
update the continuation associated with A(↵) to account for the fact that it consumes
the value given back upon ending `3. Ending a loan (or a borrow, depending of the
point of view) leaves the synthesized code unchanged.
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p 7! (loanm `1, loan
m `2)

px 7! ?
py 7! ?

A(↵){
_,

borrow
m `1 (�1 : u32),

borrow
m `2 (�2 : u32),

(�4 : u32)

}J (`1, `2) : back �4 K

pz 7! ?

def call_choose (s0 : (U32 × U32)) :
Result U32 := do
let (s1, s2) := s0 in
let (s3, back) ← choose true s1 s2
let s4 := s3
let s5 ← s4 + 1
[.]

Then, we actually end the region abstraction A(↵) by moving back the borrows `1 and `2

in the environment, with fresh symbolic values �5 and �6 (Synth-Reorg-End-Abstraction).
Those are the values given back by choose. On the side of the translated code, we
materialize the end of A(↵) by introducing a call to its continuation. As noted above,
this continuation consumes the value given back to the loan `3 upon ending it (that is,
�4); it also outputs the values given back to `1 and `2 (that is, the pair: (�5, �6)). We
get:

p 7! (loanm `1, loan
m `2)

px 7! ?
py 7! ?
_ 7! borrow

m `1 (�5 : u32)

_ 7! borrow
m `2 (�6 : u32)

pz 7! ?

def call_choose (s0 : (U32 × U32)) :
Result U32 := do
let (s1, s2) := s0
let (s3, back) ← choose true s1 s2
let s4 ← s3 + 1
let (s5, s6) ← back s4
[.]

We can finally end the borrow `1 and evaluate the return, which ends the translation
(Synth-E-Return). As we save meta-information about the assignments to generate
suitable names for the variables, Aeneas actually generates the following function:

def call_choose (p : (U32 × U32)) : Result U32 := do
let (px, py) := p
let (pz, back) ← choose true px py
let pz0 ← pz + 1
let (px0, _) ← back pz0
ok px0

13.2 Translation Example: choose

We now proceed with the synthesis of the choose, which requires synthesizing a backward
function. We recall its definition here for the sake of clarity; like in the previous example,
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we make all the statements explicit.

1 fn choose<'a, T>(b : bool, x : &'a mut T, y : &'a mut T) -> &'a mut T {
2 if b {
3 x_ret = move x;
4 return;
5 }
6 else {
7 x_ret = move y;
8 return;
9 }

10 }

Unlike call_choose, the choose function takes borrows as input parameters. We thus
need to track their provenance, from the point of view of the callee. As a consequence,
we initialize the environment by introducing an abstraction containing loans so as to
model the values owned by the caller and loaned to the function for as long as ↵ lives
(Synth). This is the dual of the caller’s point of view: the abstraction contains two
mutable borrows `(0)x and `(0)y , whose loans are not in the environment; they stand
for the values we consumed upon calling the function. The abstraction also contains
two mutable loans `x and `y, associated to the borrows of the input values x and y.
Importantly, we attach a continuation that we will use for the synthesis, and which
is currently the identity; intuitively, this means that `(0)x and `x are actually the same
(and similarly for `(0)y and `y). The link between borrows and loans inside the input
region abstraction will become more complex as we proceed through the synthesis.

Ainput(↵){
borrow

m `(0)x _,

borrow
m `(0)y _,

loan
m `x,

loan
m `y,

}J (`(0)x , `(0)y ) : � `x `y ) (`x, `y) K,

b 7! �b

x 7! borrow
m `x (�x : T)

y 7! borrow
m `y (�y : T)

def choose
{T : Type} (b : Bool) (x y : T) :
Result (T × (T ! (T × T)) := do
[.]

We then evaluate the if at line 2 (Synth-E-IfThenElse-NoJoin). This requires branch-
ing over the symbolic value �b. We duplicate the environment and substitute �b with
true for the first branch, and false for the second branch. Of course, this introduces a
branching in the synthesized translation. Below, we show the environment for the first
branch of the if:
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Ainput(↵){
borrow

m `(0)x _,

borrow
m `(0)y _,

loan
m `x,

loan
m `y,

}J (`(0)x , `(0)y ) : � `x `y ) (`x, `y) K,

b 7! true

x 7! borrow
m `x (�x : T)

y 7! borrow
m `y (�y : T)

def choose
{T : Type} (b : Bool) (x y : T) :
Result (T × (T ! (T × T)) := do
if b then [.]
else [.]

We proceed with the evaluation of the first branch. Upon reaching line 3, we move x to
the special return variable; the synthesized code is left unchanged.

Ainput(↵){
borrow

m `(0)x _,

borrow
m `(0)y _,

loan
m `x,

loan
m `y,

}J (`(0)x , `(0)y ) : � `x `y ) (`x, `y) K,

b 7! true

x 7! ?
y 7! borrow

m `y (�y : T)

xret 7! borrow
m `x (�x : T)

We then reach the return on line 4. This is the crucial part of the translation. We need to
transform the environment, by using reorganization rules then the  relation, so that it
matches a target environment given by the signature of choose; this target environment
is the environment used by Synth-E-Call to model a call to choose. In the process,
we will introduce and merge region abstractions, thus progressively synthesizing the
backward function for the first branch of the if.

We first use Synth-Le-MoveValue to move the values of b and y to anonymous
values, and use Synth-Le-AnonValue to eliminate the value of b as it doesn’t contain
any borrows; this has no effect on the synthesis. We then apply Synth-Le-ToAbs to
transform the borrow moved from y into a region abstraction A0. This region abstraction
has no inputs, as it doesn’t contain mutable loans, and a single output, the value to
give back for the mutable borrow `y; we thus attach a continuation stating that upon
ending A0 we retrieve a value for `y, which is actually �y.
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Ainput(↵){
borrow

m `(0)x _,

borrow
m `(0)y _,

loan
m `x,

loan
m `y,

}J (`(0)x , `(0)y ) : � `x `y ) (`x, `y) K,

b 7! ?
x 7! ?
y 7! ?
xret 7! borrow

m `x (�x : T)

A0{ borrow
m `y _ }J `y : �y K

We perform one last step by merging Ainput(↵) and A0 together (Synth-Le-MergeAbs).
Merging the content of region abstractions is done as before; in particular the borrow
and the loan for `y cancel out. Merging two region abstractions also requires composing
their continuations. Importantly, the fact that a borrow and a loan cancel out is
mirrored by the fact that the continuation of Ainput(↵) consumes a borrow (`y) which
is actually an output of A0. The resulting continuation of Ainput(↵) thus only has one
input, the value consumed upon ending `x.

This yields an environment which matches our target environment: xret maps to
a valid borrow, all the other local variables map to ?, and we have a single region
abstraction for ↵ which acts as an interface between the caller and the callee. We can
thus end the translation of the first branch by using Synth-E-Return; the returned
value is the value inside xret (i.e., �x) while the backward function is given by the
continuation attached to Ainput(↵).

Ainput(↵){
borrow

m `(0)x _,

borrow
m `(0)y _,

loan
m `x,

}J (`(0)x , `(0)y ) : � `x ) (`x, �y) K,

b 7! ?
x 7! ?
y 7! ?
xret 7! borrow

m `x (�x : T)

def choose
{T : Type} (b : Bool) (x y : T) :
Result (T × (T ! (T × T)) := do
if b then ok (x, fun x0 => (x0, y))
else [.]

We omit the translation of the second branch, which is similar.
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13.3 Translation Example: Join

We now look at a translation example which involves a join operation. The if in
the function below is choose inlined; we will see that the translation also leads to the
translation of choose being inlined.

1 fn inline_choose(b : bool, mut x : u32, mut y : u32) -> u32 {
2 let px = &mut x;
3 let py = &mut y;
4 let pz;
5 if b {
6 pz = move px;
7 } else {
8 pz = move py;
9 }

10 *pz = *pz + 1;
11 x_ret = move x;
12 return;
13 }

We directly jump to the interesting part, that is what happens when we join the
environment resulting from the evaluation of the different branches (lines 6 and 8).
Below, we show the environment at the end of the left branch, the environment at the
end of the right branch, and the result of the synthesis.

b 7! true

x 7! loan
m `x

y 7! loan
m `y

px 7! ?
py 7! borrow

m `y �y

pz 7! borrow
m `x �x

b 7! false

x 7! loan
m `x

y 7! loan
m `y

px 7! borrow
m `x �x

py 7! ?
pz 7! borrow

m `y �y

def inline_choose
{T : Type} (b : Bool) (x y : T) :
Result T := do
let [.] ←

if b then [.]
else [.]

We join the two environments, resulting in the following state before the collapse.
The join introduces two fresh symbolic values: �b when joining the values of b (true
and false) and �z when joining the values of pz (more specifically, �x and �y). In
the synthesized translation, those symbolic values are output by the if then else

expression; importantly, we leave some holes for the continuation(s) that we will have
to (potentially) synthesize for the region abstractions introduced by the join. We also
note that the value b0 synthesized in the translation is not useful: it is an artifact
resulting from the fact that, upon evaluating the branching, we substituted the original
(symbolic) value of b with true and false in the first and second branch, respectively, and
that upon exiting the branches we joined those values back into a fresh symbolic value.
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We could update the rules to get rid of this artifact; instead we prefer to keep the rules
simple and implement a micro-pass to detect and eliminate this pattern afterwards.

b 7! �b

x 7! loan
m `x

y 7! loan
m `y

px 7! ?

A0{ borrow
m `x _ }J `x : �x K

py 7! ?

A1{ borrow
m `y _ }J `y : �y K

pz 7! borrow
m `z �z

A2{
borrow

m `x _ ,

borrow
m `y _ ,

loan
m `z

}J � `z ) ( `x , `y ) : ( `z , `z ) K

def inline_choose
{T : Type} (b : Bool) (x y : T) :
Result T := do
let (b0, z, [.]) ←

if b then ok (true, x, [.])
else (false, y, [.])

Similarly to the example in Section 12.1, we also introduce three region abstractions:
A0 results from the join of the values of px (? in the first branch and borrow

m `x �x in
the second branch); A1 from the join of py (either borrowm `y �y or ?); A2 from the join
of pz (either borrow

m `x �x or borrow
m `y �y). Those abstractions are also annotated

with continuations which this time contain markers; those markers indicate the fact
that the continuations may consume or output values only if we took a specific branch.
For instance, the continuation for A2 is: � `z ) ( `x , `y ) : ( `z , `z ). It consumes
the value given back upon ending `z and outputs: either the value to give back to `x,
in case we took the first branch, or the value to give back to `y, in case we took the
second branch. It may be clearer to “project” this continuation, similarly to what we
did in Section 12.1, to only keep the left or right part. If we project it to the left (i.e.,
if we took the first branch), we get: � `z ) `x : `z (this region abstraction consumes a
value for `z and outputs the value to give back to `x). Similarly, if we project to the
right (i.e., if we took the second branch) we get: � `z ) `y : `z (A2 consumes a value
for `z and outputs the value to give back to `y).

We now collapse the environment to remove the markers; this has the effect of
merging the region abstractions A0, A1 and A2 into a single one. The important part is
related to the composition of the continuations. For instance, both A0 and A2 output
some values for `x, however A0 outputs a value only in the case we took the right branch,
while A2 does it only if we took the left branch. As a consequence, the resulting region
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abstraction A3 outputs a value for `x in all cases, but this value depends on whether
we took the left or right branch. More precisely, this value must be the value consumed
upon ending `z if we took the left branch (because of A2), and �x otherwise (because of
A0); we note this as: `z � �x. We show the resulting environment below.

b 7! �b

x 7! loan
m `x

y 7! loan
m `y

px 7! ?

py 7! ?

pz 7! borrow
m `z �z

A4{
borrow

m `x _,

borrow
m `y _,

loan
m `z

}J � `z ) (`x, `y) : (`z � �x, �y � `z) K

def inline_choose
{T : Type} (b : Bool) (x y : T) :
Result T := do
let (b, z, [.]) ←

if b then ok (true, x, [.])
else (false, y, [.])

We are now ready to finish the synthesis of the branching: we introduce one
continuation per region abstraction (here, A4), and synthesize those continuations
simply by “projecting” them. We also replace the continuation in A4 so that it refers to
a fresh name (back), which is the name used in the synthesis; this way, upon ending A4

later, we simply insert a call to back

b 7! �b

x 7! loan
m `x

y 7! loan
m `y

px 7! ?

py 7! ?

pz 7! borrow
m `z �z

A4{
borrow

m `x _,

borrow
m `y _,

loan
m `z

}J � `z ) (`x, `y) : back `z K

def inline_choose
{T : Type} (b : Bool) (x y : T) :
Result T := do
let (b0, z, back) ←

if b then ok (true, x, fun z => (z, y))
else (false, y, fun z => (x, z))

We skip the end and show the result of the synthesis below:

def inline_choose
{T : Type} (b : Bool) (x y : T) :
Result T := do
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let (b0, z, back) ←
if b then ok (true, x, fun z => (z, y))
else (false, y, fun z => (x, z))

let z0 ← z + 1
let (x0, _) = back z0
ok x0

Finally, we show the result of the translation after running the micro-passes, which
in particular eliminate the useless b0:

def inline_choose
{T : Type} (b : Bool) (x y : T) :
Result T := do
let (z, back) ←

if b then ok (x, fun z => (z, y))
else (y, fun z => (x, z))

let z0 ← z + 1
let (x0, _) = back z0
ok x0

13.4 Translation Example: Loop

We conclude this series of examples with the loop below.

1 // x 7! 0, y 7! �y

2 loop {
3 if copy x < copy y {
4 x += 1;
5 continue;
6 }
7 else {
8 break;
9 }

10 }

We directly jump to the interesting part and omit the computation of the fixed-point
at the entry of the loop, which is: x 7! �x, y 7! �y. We now have two things to
translate: the body of the loop, and the snippet of code around the loop; for the
body we generate a separate, top-level recursive function, which we then use for the
translation of the snippet of code above. We show the translation of the loop below.
First, we note that the environment contains two symbolic values: the translation of
the loop should thus take one input per symbolic value1. Of course, this often generates

1It should also take as input one continuation per region abstraction; there is none here.
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loops with useless parameters; a micro-pass later detects and eliminates those, in order
to generate code which is as tight as possible.

We also compute the join of all the environments we get upon reaching a break in
the loop; we dub the resulting environment the output environment of the loop. We
will use this output environment to resume the execution after the loop, and use it at
present to compute the output type of the translation. This environment is actually
x 7! �x, y 7! �y; as it contains two symbolic values of type u32, the loop outputs a
pair of u32:

x 7! �x

y 7! �y

def loop (x y : U32) :
Result (U32 × U32) := do
[.]

We elide the treatment of the if and the addition, and focus on the continue; upon
reaching the continue we have:

x 7! �0x
y 7! �y

def loop (x y : U32) :
Result (U32 × U32) := do
if x < y then do

let x ← x + 1
[.]

else
[.]

We introduce a recursive call to the (translation of) the loop. In order to so, we
match the current environment (after eventually transforming it following ) with
the fixed-point environment to compute a mapping from the symbolic values in the
fixed-point environment to values in the current environment; this allows us to find the
inputs of the loop. In the present case, we get: �x 7! �0x and �y 7! �y. We get:

def loop (x y : U32) :
Result (U32 × U32) := do
if x < y then do

let x1 ← x + 1
loop x1 y

else
[.]

We then proceed to the else branch, and have to evaluate the break. Similarly to
the case of the continue, we match the current environment with the output environment
to compute a mapping from the symbolic values in this output environment to values of
the current environment. From this, we deduce that we should return the pair (x1, y):
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def loop (x y : U32) :
Result (U32 × U32) := do
if x < y then do

let x1 ← x + 1
loop x1 y

else
ok (x1, y)

We now switch back to the snippet of code containing the loop. Upon entering the
loop we have environment x 7! 0, y 7! �y, that we match against the fixed-point
environment x 7! �x, y 7! �y. We get the following mapping: �x 7! 0 and �y 7! �y;
as a consequence we insert a call to loop 0 y. We also continue the execution with the
output environment. We get:

let (x1, y1) ← loop 0 y
[.]

Finally, now that the translation is complete, we note that y is threaded unchanged
through the recursive calls of the loop. As a consequence, it does not need to be an
output; we detect and fix this in a micro-pass. We get:

def loop (x y : U32) :
Result U32 := do
if x < y then do

let x1 ← x + 1
loop x1 y

else
ok x1

-- The snippet of code around the loop:

let x1 ← loop 0 y
[.]

13.5 Synthesis Rules

The rules are in figures 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, and 13.7. They describe a
process in which we traverse the source program in a forward fashion, simultaneously
updating our symbolic environment and generating pure �-terms. The translation is
currently trusted, and its correctness left as future work.

The rules are slightly modified versions of the semantics of LLBC#. We introduce
a new judgement ⌦ ` s S# +s e, which means that statement s evaluates to set of
tagged states S# while compiling down to pure expression e. For statements that are
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in terminal position, we modify the semantics so that they evaluate to an empty set of
tagged states, meaning we can stop the synthesis there. For instance, when reaching
the statement panic we simply synthesize the expression fail.

But for statements that are not in terminal position (i.e., on the left-hand side of a
semicolon), we are faced with the usual mismatch between statement-based languages
and let/expression-based languages. We solve the issue by allowing expressions to
contain holes which receive a continuation – we write E[·] (or E[~. ] when there may be
several holes). In practice, our implementation uses continuation-passing style to keep
things readable, as opposed to an AST definition with holes for our target language.
We spare the reader the grammar of expressions e, which is a standard lambda-calculus;
suffices to say that we use  to denote the monadic bind operator, as in Chapter 8;
successful computations evaluate to ok, while failing (i.e., panicking) computations
evaluate to fail. The synthesis of values is captured by the rules Pure-* (Figure 13.1);
as we alluded to earlier, our translation never encounters, nor produces, a source variable
x; rather, they structurally visit a symbolic value and map source symbolic values to
variables in the target �-calculus (Pure-Symb). Naturally, in practice, we use heuristics
to pick sensible names for the symbolic variables, thus guaranteeing that the output
of our translation is readable. Conversion of types from source to target is almost
the identity, except for Box ⌧ , &⇢

mut ⌧ and &⌧ which become ⌧ , consistently with
Pure-Box, Pure-Mut-Borrow and Pure-Shared-Borrow.

Another insight about our rules: in order to make progress, we may synthesize fresh
bindings at any time via a reorganization. For instance, if a symbolic value with a
tuple type is refined into the tuple of its components, we need to mirror this fact in the
generated program (Synth-Reorg-SymbolicPair). That is, if we use a reorganization
phase to refine the symbolic value � : (⌧0, ⌧1) into the pair (� : ⌧0, � : ⌧1), then we
generate the following expression in the translation: let (�0, �1) = � in ....

The rest of the rules leverage our earlier concepts of region abstractions, projections,
and symbolic environments to precisely capture the relationship between a function
body and its parameters (callee), or a function application and its arguments (caller).

We adopt the perspective of the caller and begin with function calls. In Synth-E-Call,
we follow the procedure outlined in our earlier examples. First, we allocate fresh sym-
bolic values and borrows for the output value vout; those must be output by the call
to the function in the synthesized code. We also introduce one region abstraction per
region in the function type. For the purpose of the synthesis, region abstractions are
annotated by continuations; those are also output by the call in the translation.

Matches and if else are delicate, and come in several flavors. We remark that
our matches are made up of non-nested, constructor patterns; by the time we examine
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Rust’s internal MIR language, nested patterns have already been desugared.
If there is enough static knowledge to determine which branch we should take, we

do not bother with generating a trivial match or if then else expression and simply
generate code for the corresponding branch (Synth-E-IfThenElse-True).

If there is not enough static knowledge, because for instance we are matching over
a symbolic value, then we synthesize a branching in the translation. We have two
possibilities. We either execute the two branches without performing a join afterwards,
leading to a disjunction of the control-flow (Synth-E-IfThenElse-NoJoin); because
we are currently using an error monad in the translation, which only models successful
executions and panics, we currently leverage this possibility when one of the branches
contains a return as it forces us to break the control-flow. Otherwise, we join the
environments together (Synth-E-IfThenElse-Join). Because the join introduces fresh
symbolic values, and fresh symbolic values need to be bound by let-bindings in the
translation, we update the rules for the join so that they also synthesize code for the left
and right branches. For instance, Synth-Join-Symbolic, which states that we can join
two different values (if they don’t contain loans, borrows, or ?), into a fresh symbolic
value �, binds � in the code synthesized for the two branches.

When reaching a return (Synth-E-Return), we have to exhibit a series of trans-
formations (according to the rules of ) to turn the current state into a target state
which derives from the function signature. By doing those transformations, we actually
derive the continuations which will be used for the backward functions; for instance,
we may merge two region abstractions together, as shown in Section 13.3, which has
the effect of composing their respective continuations. For this reason, we update the
rules of  to also synthesize code. For instance, when using Synth-Le-ToSymbolic to
replace a value v with a fresh symbolic value �, we let-bind � in the synthesized code.
Finally, when synthesizing a function (Synth), we simply apply the synthesis on its
body, starting with a properly initialized state.
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Pure-Mut-Borrow
⌦ ` v +s e

⌦ ` borrow
m ` v +s e

Pure-Const

⌦ ` ni32 +s ni32

Pure-Pair
⌦ ` vl +s ~el
⌦ ` vr +s ~er

⌦ ` (vl, vr) +s (el, er)

Pure-Left
⌦ ` v +s ~e

⌦ ` Left v +s Left e

Pure-Right
⌦ ` v +s ~e

⌦ ` Right v +s Right e

Pure-Symb

⌦ ` � +s �

Pure-Box
⌦ ` v +s e

⌦ ` Box v +s e

Pure-Shared-Borrow
loan

s ~̀v 2 ⌦ ` 2 ~̀

⌦ ` v +s e
⌦ ` borrow

s ` +s e

Figure 13.1: Synthesis Rules: Values
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Synth-Reorg-End-MutBorrow
first hole of ⌦[., .] not inside a region abstraction

second hole of ⌦[., .] not inside a borrowed value or a region abstraction

no loan, borrow
r 2 v

⌦[loanm `, borrowm ` v] ,! ⌦[v,?] +s [.]

Synth-Reorg-End-MutBorrow-Abs
hole of ⌦[.] not inside a borrowed value or a region abstraction

no loan, borrow
r 2 v

⌦[?] ` v +s e

⌦[borrowm `ink v], A { loan
m `ink }J (

�!
`outi ) : �

�!
`in ) f

�!
`inj K ,!

⌦[v,?], A{v}J (
�!
`outi ) : �

��!
`inj 6=k ) let `ink = e in f

�!
`inj K, +s [.]

Synth-Reorg-End-SharedReservedBorrow
hole of ⌦[.] not inside a borrowed value or a region abstraction

⌦[borrows,r `] ,! ⌦[?] +s [.]

Synth-Reorg-End-SharedLoan
borrow

s,r ` 62 ⌦[loans ` v]

⌦[loans ` v] ,! ⌦[v] +s [.]

Synth-Reorg-Activate-Reserved
loan, borrowr /2 v

hole of ⌦[., borrowr `] not inside a shared value

` /2 ⌦[., .], v

⌦[loans ` v, borrowr `] ,!
⌦[loanm `, borrowm ` v] +s [.]

Synth-Reorg-Seq
⌦0 ,! ⌦1 +s E1[.] ⌦2 ,! ⌦2 +s E2[.]

⌦0 ,! ⌦2 +s E1[E2[.]]

Synth-Reorg-None

⌦ ,! ⌦ +s [.]

Synth-Reorg-End-Abstraction
no borrows, loans 2 �!v ,

�!
v0 �!� fresh

⌦, A {�!v ,
������!
borrow

s `,
��������������!
borrow

m `out (v0 : ⌧) }J
�!
`outi = �!e K ,!

⌦,
����������!
_! borrow

s `,
������������������!
_! borrow

m `out (� : ⌧) +s let�!� = �!e in [.]

Synth-Reorg-SymbolicBox
�0 fresh

⌦[� : Box ⌧ ] ,! ⌦[Box�0] +s let �0 = � in [.]

Synth-Reorg-SymbolicPair
�0, �1 fresh

⌦[� : (⌧0, ⌧1)] ,! ⌦[(�0, �1)] +s let (�0,�1) = � in [.]

Figure 13.2: Synthesis Rules: Reorganization
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Synth-Le-ToSymbolic
borrows, loans, ? 62 v

� fresh

⌦ ` v +s v0

⌦[v]  ⌦[�] +s let � = v0 in [.]

Synth-Le-ToAbs
⌦ ` v �to-abs e,

�!
A

⌦, _! v  ⌦,
�!
A +s [.]

Synth-Le-MoveValue
no outer loans in v

hole of ⌦[.] not inside a shared loan or a region abstraction

⌦[v]  ⌦[?], _ 7! v +s [.]

Synth-Le-ClearAbs

⌦, A {}  ⌦ +s [.]

Synth-Le-MergeAbs
` A0J (

�!
`out0 ) : �

�!
`in0 ) f0

�!
`in0 K on A1J (

�!
`out1 ) : �

�!
`in1 ) f1

�!
`in1 K = A

A = { ...,
��������������!
borrow

m `out (v0 : ⌧),
�����!
loan

m `in }

⌦, A0, A1  ⌦, AJ (
�!
`out) : �

�!
`in ) (let

�!
`out1 = f1

�!
`in1 in let

�!
`out0 = f0

�!
`in0 in

�!
`out) K

Synth-Le-Fresh-MutLoan
` fresh

⌦[v]  ⌦[loanm `], _! borrow
m ` v +s [.]

Synth-Le-Fresh-SharedLoan
` fresh

⌦[v]  ⌦[loans ` v] +s [.]

Synth-Le-Reborrow-MutBorrow
`1 fresh

⌦[borrowm `0 v]  ⌦[borrowm `1 v], _! borrow
m `0 (loan

m `1) +s [.]

Synth-Le-AnonValue
no symbolic values, borrows, loans 2 v

⌦  ⌦, _! ? +s [.]

Figure 13.3: Synthesis Rules: the  Relation (Selected Rules)
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ToAbs-Empty
no borrows, loans 2 v⌦ ` v +s e

⌦ ` v �to-abs e, ;

ToAbs-Left
⌦ ` v �to-abs e,

�!
A

⌦ ` Left v �to-abs
Left e,

�!
A

ToAbs-Right
⌦ ` v �to-abs e,

�!
A

⌦ ` Right v �to-abs
Right e,

�!
A

ToAbs-Box
⌦ ` v �to-abs e,

�!
A

⌦ ` Box v �to-abs e
�!
A

ToAbs-SharedBorrow
A fresh loan

s ` v 2 ⌦ ⌦ ` v +s e
⌦ ` borrow

s ` �to-abs e, A{borrows `}

ToAbs-SharedLoan
A fresh ⌦ ` v +s e

⌦ ` loan
s�!` v �to-abs e, A{loans

�!
` v}

ToAbs-MutBorrow

no borrows, ? 2 v ⌦ ` v �to-abs e,
������������������!
AiJ(
�!
`outi ) : �

�!
`ini ) fi

�!
`ini K

⌦ ` borrow
m ` v �to-abs e, ([�!A ) [ {borrowm ` _}J (`, ...,

�!
`outi , ...) : �

�!
`ini ) (e, ..., fi

�!
`ini , ...) K

ToAbs-MutLoan
A fresh

` loan
m ` �to-abs `, A{loanm `}J () : � `) () K

ToAbs-Pair
` vl �to-abs �!e l, Al ` vr �to-abs �!e r, Ar

` (vl, vr) �to-abs
�!
( el, er), Al,

�!
A r

Figure 13.4: Synthesis Rules: Transforming Values to Region Abstractions
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Synth-E-Return
fh~⇢, ~⌧i = fn h~⇢i (�!x : �!⌧ ) (�!y :

�!
⌧ 0 ) (xret : ⌧ret) { s } is the function being synthesized

final (~⇢, ~⌧ , ⌧) = (v,
��!
A(⇢)) ⌦0 = xret 7! v, �!x 7!

�!
? ,
���������������������!
A(⇢)J (

�!
`out⇢ ) : �

�!
`in⇢ ) f⇢

�!
`in⇢ K

⌦  ⌦0 +s E[.] ⌦0 ` v +s e
⌦ ` return ; +s E[return (e,

�!
f⇢)]

Synth-E-Panic

⌦ ` panic ; +s fail

Synth-Seq-Symbolic
⌦ ` s0  {((),⌦i)} +s E[~. ] 8 i, ⌦i ` s1  S#

i +s Ei[~. ]

⌦ ` s0; s1  [ ([
i
S#
i ) +s E[..., Ei[~. ], ...]

Synth-E-IfThenElse-True
⌦ ` op + (v, ⌦0) v = true _ v = loan

s ` true ⌦ ` s0  S# +s E[~. ]

⌦ ` if op then s0 else s1  S# +s E[~. ]

Synth-E-IfThenElse-NoJoin
⌦ ` op + (v, ⌦0) v = (� : bool) _ v = loan

s ` (� : bool) ⌦0 = ⌦0[true
.
�]

⌦1 = ⌦0[false
.
�] ⌦0 ` s0  S#

0 +s E0[~. ] ⌦1 ` s1  S#
1 +s E1[~. ]

⌦ ` if op then s0 else s1  S#
0 [ S#

1 +s if � thenE0[~. ] elseE1[~. ]

Synth-E-IfThenElse-Join
⌦ ` op + (v, ⌦0) v = (� : bool) _ v = loan

s ` (� : bool) ⌦0 = ⌦0[true
.
�]

⌦1 = ⌦0[false
.
�] ⌦0 ` s0  {(),⌦00} +s E0[.] ⌦1 ` s1  {(),⌦01} +s E1[.]

⌦00, ⌦
0
1 ` join⌦ ⌦00 ⌦

0
1  ⌦j | Ej

0[.] | E
j
1[.] ⌦j & ⌦c ⌦1 ` s1  S#

1 +s E1[~. ]

�!� and

����������������!
AJ �

�!
`out )

�!
`in : f

�!
`inK are the fresh symbolic values and abs. of ⌦c

⌦ ` if op then s0 else s1  ((), ⌦c) +s
let (�!� ,

�!
f ) 

⇣
if � thenE0[ E

j
0[ ok (�!� ,

�������!
proj_left f) ] ] elseE1[ E

j
1[ ok (�!� ,

��������!
proj_right f) ] ]

⌘
; [.]

Synth-E-Call
fh~⇢, ~⌧i = fn h~⇢i (�!x : �!⌧ ) (�!y :

�!
⌧ 0 ) (xret : ⌧ret) { s }

⌦j ` opj + (vj , ⌦j+1)
�!⇢ fresh

����!
Asig(⇢), vout = inst_sig(⌦n, ~⇢,~v, ⌧ret)

8⇢, A⇢ = { ...,
����������!
borrow

m `out⇢ _,
�����!
loan

m `in⇢ , ... }���!
fback
⇢ fresh ⌦0 = ⌦n,

�������������������������!
Asig(⇢)J (`out⇢ ) : � `in⇢ ) fback

⇢ `in⇢ K
8j, ⌦j+1 ` vj +s ej ⌦0 ` vout +s e ⌦0 ` p := vout  ((), ⌦00) +s E[.]

⌦0 ` p := fh~_, ~⌧i(�!op) ((), ⌦00) +s let (e,
���!
fback
⇢ ) = f �!ej in E[.]

Synth
fh~⇢, ~⌧i = fn h~⇢i (�!x : �!⌧ ) (�!y :

�!
⌧ 0 ) (xret : ⌧ret) { s } init (~⇢, ~⌧) = (�!vi ,

��!
A(⇢))

⌦ =
�����!
A(⇢)JidK, �!x 7! �!v , �!y 7!

�!
? xret 7! ? ⌦ ` s ; +s ef ⌦ ` �!v +s �!e
f +s � �!e ) ef

Figure 13.5: Synthesis Rules: Evaluation Rules (Selected Rules)
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Synth-Join-Same

⌦0, ⌦1 ` joinv v v + v | ; | [.] | [.]

Synth-Join-Symbolic
no borrows, loans, ? 2 v0, v1

� fresh ⌦0 ` v0 +s v(p)0 ⌦1 ` v1 +s v(p)1

⌦0, ⌦1 ` joinv v0 v1 + � | ; | let � = v(p)0 in [.] | let � = v(p)1 in [.]

Synth-Join-MutBorrows
`2, A

0
fresh ⌦0, ⌦1 ` joinv v0 v1 + v2 |

�!
A | E0[.] | E1[.]

⌦0, ⌦1 ` joinv (borrowm `0 v0) (borrow
m `1 v1) + borrow

m `2 v2 |
A0 { borrow

m `0 _ , borrow
m `1 _ , loanm `2 }J � `2 ) ( `0 , `1 ) : ( `2 , `2 ) K, �!A

| E0[.] | E1[.]

Synth-Join-SharedBorrows
`2, �, A fresh no loan

m
, borrow, ? 2 v0, v1

loan
s `0 v0 2 ⌦0 loan

s `1 v1 2 ⌦1

⌦0, ⌦1 ` joinv (borrows `0) (borrow
s `1) + borrow

s `2 |
A { borrow

s `0 , borrow
s `1 , loan

s `2 � }J �()) () : () K | E0[.] | E1[.]

Figure 13.6: Synthesis Rules: Joining Values (Selected Rules)

proj_left

✓�!
`in : �

�!
`in )= (..., el � er, ...)

◆
=

✓�!
`in : �

�!
`in )= (..., el, ...)

◆

proj_right

✓�!
`in : �

�!
`in )= (..., el � er, ...)

◆
=

✓�!
`in : �

�!
`in )= (..., er, ...)

◆

Figure 13.7: Synthesis Rules: Projecting Continuations for the Join





Chapter 14

Evaluation

14.1 Implementing Aeneas

Our implementation is written in a mixture of Rust and OCaml. A first tool, dubbed
Charon, performs the translation from Rust’s MIR internal representation to LLBC.
Concretely, Charon is a Rust compiler plugin that performs a large amount of mundane,
tedious tasks, such as: computing a dependency graph, reordering definitions, grouping
mutually recursive definitions together, reconstructing data type creation, and generally
getting rid of the idioms that are definitely too low-level for LLBC (Section 9.2). Once
this is done, Charon dumps a JSON file to disk containing the LLBC AST. We plan to
switch to a more efficient binary format in the future. As of today, Charon totals 16
kLoC (lines of code, excluding whitespace and comments). Charon lives as a separate
project because we believe it has an existence of its own outside of Aeneas. We are
actually using it for other projects such as the Eurydice compiler [413] from Rust to
C, that we use for the purpose of writing all new implementations in Rust while still
providing code for legacy projects which require C. We carefully designed Charon
to make it a reusable library; this allowed in particular the Kani Rust Verifier [414]
to implement an experimental backend which reuses the micro-passes implemented by
Charon [415].

Aeneas picks up the Charon-generated AST, and implements the transformations
described in Chapter 9 and Chapter 13. Practically speaking, we have a single interpreter
that runs in two modes, either concrete or symbolic. The former produces a final value,
if running a closed term; the latter produces a translated program. We currently extract
to F?, Coq, HOL4 and Lean. Effectively, our symbolic interpreter acts as a borrow
checker for Rust programs using our semantic notion of borrows We have written
Aeneas in OCaml, a language much better suited to the manipulation of ASTs than
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Rust. The implementation of Aeneas totals 35kLoC.
The implementation is, naturally, trusted. However, we have taken extraordinary

care to ensure that it is trustworthy. Notably, when running the code in CI, after
every application of one of the rules, we verify a large amount of invariants, such as:
the environment is well-typed; borrows are consistent; shared values don’t contain a
mutable loan, etc. In practice, those invariants are extremely tight, and have led to the
great level of detail that our rules exhibit. Should one turn off those invariant checks,
the whole Charon + Aeneas invocation becomes almost instantaneous, as opposed
to a few seconds per file when constantly checking invariants. In addition to those 35
kLoC, we have 13kLoC of comments; our implementation is truly written with great
care.

14.2 Borrow-Checking

14.2.1 Evaluation

We now evaluate how Aeneas performs as a borrow-checker. In the previous chapters,
we focused on establishing simulations to demonstrate the soundness of LLBC# with
respect to PL, a low-level, heap-manipulating semantics. Our theorems establish that,
for any execution in LLBC#, there exists a related execution in LLBC, and hence in
PL by composing simulations. As PL is deterministic, it gives us that all PL states
in relation with the initial LLBC# state safely execute. One key question remains
however: seeing LLBC# as a borrow-checker for LLBC, are we able to construct LLBC#

derivations in order to apply our theoretical results? To this end, we ran Aeneas on a
selection of programs.

Our test suite consists of two categories of programs. First, we implement a collection
of micro-tests totalling 2000 LoCs, without blanks and comments, spanning various
Rust patterns. In particular, we implemented 22 micro-tests (totalling 300 LoCs) to
test patterns based on loops, such as incrementing counters, updating values in a vector
(for instance, to reinitialize it), summing the elements in an array or a slice, reversing
a list in place, or retrieving a shared or mutable borrow to the n-th element of a list.
Second, we evaluate our approach on a hash-table, an AVL tree and a b-✏ tree, which
make heavy use of loops and consist of 1068 LoCs in total.

The LLBC# interpreter successfully borrow-checks all the examples, requiring less
than 1s for the whole test suite. Interestingly, we note that we actually manage to
borrow-check (and translate) functions which are not accepted by Rust’s current borrow
checker.
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14.2.2 A Limitation of Rust’s Borrow-Checker

In the process of testing the b-✏ tree we mentioned above, we bumped into a limitation
of the current Rust borrow checking algorithm; interestingly, this limitation does not
appear with Aeneas, owing to our semantic checking of borrows.

The get_suffix_at_x function, below, looks for an element in a list, and returns a
mutable borrow to the suffix of this list starting at this element, for in-place modifications
in a C-style fashion. The current Rust borrow-checker is too coarse to notice that
the Cons branch is valid. More specifically, it considers that the reborrows performed
through hd and tl should last until the end of the lexical scope, that is, until the end of
the Cons branch. We inserted the error message printed by Rust in the comments.

Instead, one may notice that is it possible to end those borrows earlier, after
evaluating the conditional, in order to retrieve full ownership of the value borrowed
by ls in the first branch of the if, and make the example borrow-check. The ongoing
replacement of the borrow-checker in Rust, named Polonius, implements a more refined
lifetime analysis, and accepts this program.

More interestingly, our semantic approach of borrows makes this program borrow-
check without issues; since our discipline is based on symbolic execution and a semantic
approach to loans, we accept the example without troubles, and are resilient to further
syntactic tweaks of the program.

fn get_suffix_at_x<'a>(ls: &'a mut List<u32>, x: u32) -> &'a mut List<u32> {
match ls {

Nil => { ls }
Cons(hd, tl) => { // error: first mutable borrow occurs here

if *hd == x { ls // second mutable borrow occurs here

} else { get_suffix_at_x(tl, x) } } } }

14.2.3 Precise Reborrows

Due to its precise management of borrows, we explained above that Aeneas can handle
programs which are supported by Polonius, and not by the current implementation of
the borrow checker. Because of the way we handle reborrows, there are actually cases
of programs deemed invalid even by Polonius, but supported by Aeneas.

For instance, in the example below, we first create a shared borrow that we store in
pp at line 2, then a reborrow of a subvalue borrowed by pp that we store in px at line 5.
Upon evaluating the assignment at line 9, px simply maps to a shared borrow of the
first component of p (environment at lines 6-8). Importantly, even though px reborrows
part of pp, there are no links between px and pp: our semantics does not track the
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hierarchy between borrows and their subsequent reborrows. In other words, line 5 is
equivalent to let px = &p.0, where we borrow directly from p without resorting to pp.
This implies that, upon ending the borrow `p stored in pp at line 9, we do not need to
end `x stored in px, which in turn allows us to legally evaluate the assertion at line 13.

let mut p = (0, 1);
let pp = &p;
// p 7! loan

s `p (0, 1)

// pp 7! borrow
s `p

let px = &(*pp.0);
// p 7! loan

s `p (loan
s `x 0, 1)

// pp 7! borrow
s `p

// px 7! borrow
s `x

p.1 = 2;
// p 7! (loans `x 0, 2)

// pp 7! ?
// px 7! borrow

s `x

assert!(*px == 1);

When we attempt to borrow check this program (with Polonius or the current imple-
mentation of the borrow checker), the Rust borrow checker considers that px reborrows
pp, and thus needs to end before pp ends. It consequently fails with the following error
message:

cannot assign to p.1 because it is borrowed
|

2 | let pp = &p;
| -- borrow of p.1 occurs here

5 | let px = &(pp.0);
9 | p.1 = 2;

| ^^^^^^^ assignment to borrowed p.1 occurs here
13 | assert!(*px == 1);

| --- borrow later used here

The code snippet below illustrates a similar example with mutable borrows. We
create a borrow px1 of (the value of) x at line 2, then reborrow this value through px2 at
line 3. At line 8, we then update px1 to borrow y. At this point, px2 still borrows x. The
important point to notice is that upon performing this update, we remember the old
value of px1 in an anonymous variable to not lose information about the borrow graph
(environment at lines 9-13). Similarly to the previous example with shared borrows,
the resulting environment doesn’t track the fact that px2 was created by reborrowing
the value initially borrowed by px1: there are no links between those two variables.
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Consequently, upon ending borrow `y (stored in px1) to access y at line 16, we don’t
need to end `2 (stored in px2). This in return allows us to legally dereference px2 at
line 22.

let mut x = 0;
let mut px1 = &mut x;
let px2 = &mut (*px1); // Reborrow: px2 now borrows (the value of) x

// x 7! loan
m `1

// px1 7! borrow
m `1 (loanm `2)

// px2 7! borrow
m `2 0

let mut y = 1;
px1 = &mut y; // Update px1 to borrow y instead of x

// x 7! loan
m `1

// _ 7! borrow
m `1 (loanm `2)

// px2 7! borrow
m `2 0

// y 7! loan
m `y

// px1 7! borrow
m `y 1

assert!(*px1 == 1);
assert!(*px2 == 0);
assert!(y == 1); // End the borrow of y through px1 (shouldn't impact px2!)

// x 7! loan
m `1

// _ 7! borrow
m `1 (loanm `2)

// px2 7! borrow
m `2 0

// y 7! 1

// px1 7! ?
assert!(*px2 == 0); // Considered invalid by rustc, but accepted by Aeneas

When attempting to borrow check this code snippet, we get the following error:

cannot use y because it was mutably borrowed
|

8 | px1 = &mut y; // Update px1 to borrow y instead of x

| ------ borrow of y occurs here
...
16 | assert!(y == 1); // End the borrow of y through px1 (shouldn't impact px2!)

| ^ use of borrowed y
22 | assert!(*px2 == 0); // Considered invalid by rustc, but accepted by Aeneas

| ---- borrow later used here

The two examples above exemplify cases where both the Rust borrow checker and
Polonius deem a program as invalid, while Aeneas accepts it. We do not claim that this
is a strong limitation of the Rust borrow checker: these use cases seem quite anecdotal
and are probably useless in practice. However, we believe the ability of Aeneas to
precisely capture the behavior of such use cases supports our claim that our semantics
really captures the essence of the borrow mechanism.
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14.3 Backends

Aeneas’ pure translation provides the benefit of abstracting away memory reasonings
for a large class of programs; this fact alone leads to an important productivity gain
for the proof engineer. Yet, it doesn’t remove the need to perform complex functional
correctness reasonings, making the backends a crucial element of the proof experience.
As a consequence, we invested an important amount of work in experimenting with
potential backends and in implementing features and tools which are essential for the
verification effort. We now review the backends currently supported by Aeneas.

We support extraction to F?, Coq, HOL4 and Lean. The F? backend was our initial
backend, and allowed us to carry out preliminary case studies (Section 14.4); we then
added backends for HOL4, Coq, and later Lean. HOL4 allowed us to experiment with
a powerful rewriting engine, which has been a key feature of the LCF provers since
their early days, and which offered a stark contrast with F?’s SMT. We also leveraged
HOL4’s powerful meta-programming capabilities to implement custom elaboration and
automation. As a HOL4 proof is essentially an SML file, we can indeed leverage the full
expressivity of SML to write custom automation and, in some way, elaboration. This
allowed us to experiment with several important features, namely: a custom encoding
of recursive function which leverages Knaster-Tarski’s fixed-point theorem to encode
partial functions (Section 14.3.1); automatic, forward instantiation of lemmas to design
custom automation, in particular for the purpose of reasoning about arithmetic proof
obligations (Section 14.3.2); a progress tactic to automatically lookup lemmas written
with pre- and post-conditions so as to write proofs in a Hoare-logic style (Section 14.3.3).
The HOL4 standard library for Aeneas is currently made of more than 4.7k LoCs; we
however decided to switch to a different prover as we encountered several shortcoming:
proofs can be hard to structure in HOL4, and the lack of support for dependent types
was an important limitation in some situations.

We then experimented with Coq, and quickly moved to Lean; the main reason for
this choice was Lean’s meta-programming capabilities which allowed us to re-implement
better versions of the features we had implemented in HOL4. We currently focus on
the Lean backend which is as of today the most complete; the standard library we have
implemented for Aeneas currently comprises more than 7.2k LoCs. We now review
the different features we implemented.

14.3.1 Recursive, Partial Functions

As idiomatic Rust programs contain recursive functions and, most importantly, loops,
Aeneas must provide good support for (mutually) recursive functions. A key issue stems
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from the fact that, for soundness purposes, theorem provers only support terminating
functions. In particular, HOL4 and Coq only support structurally terminating functions,
which is very restrictive in practice. Consider for instance a function which iterates
over the elements of an array starting at index 0; if this is a very common pattern in
Rust, this function is not structurally terminating and can thus not be directly encoded
in those provers. F? and Lean on their side have native support for non-structurally
terminating functions. In the case of F?, the user can supply a measure of termination
with a decreases clause; this works smoothly combined with the possibility of writing
preconditions. In the case of Lean, the user can annotate definitions with termination_by
and decreasing_by clauses, to provide a measure of termination and a proof that the
measure indeed terminates at each recursive call, respectively; under the hood, Lean
encodes such functions with a special fixed-point operator. However, those don’t work
well in the context of Aeneas, as the pure model is automatically generated, making it
cumbersome to add such annotations. A solution would be to allow supplying hand-
written annotations in the original Rust code, which would then be inserted in the
generated model, but as of today we do not have support for those annotations, while
designing and implementing a specification language requires an important amount of
work. We experimented with permitting the user to provide, e.g., decreases clauses,
in a separate file. While this allowed to make some examples work (see Section 14.4), it
did not scale very well. Worse, it is possible in Rust to write partial functions which
may indefinitely loop for some inputs, and we need to support those.

One last important observation is that the proof of termination required from the
user when defining a function is often redundant once the user writes and prove a
correctness theorem. Let us consider the example below, written in Lean syntax, and
which models a function summing the elements over a list. This function is very similar
to the model which would be generated by Aeneas for a loop iterating over the elements
of an array. Importantly, making this function type-check in Lean requires annotating
it with termination_by and decreasing_by clauses.

def sum (l : List Int) (i : Nat) : Int :=
if i > l.length then 0
else l.index i + sum l (i + 1)

termination_by l.length - i -- termination measure

decreasing_by ... -- proof that the measure decreases (omitted)

The proof of termination of this function is simple: the quantity l.length - i
(rounded to 0 if i is greater than l.length) decrements at each recursive call. One may
want to prove the following property over sum, which states that using foldl to sum the
elements of the list leads to the same result:
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theorem sum_eq (l : List Int) :
sum l 0 = l.foldl (fun s x => s + x) 0 :=
... -- proof omitted

The proof requires generalizing the theorem for any index i. More importantly, it
requires performing an induction on l.length − i. We note that when performing this
induction to prove sum_eq, we actually exhibit the termination measure of the sum
function itself. As a consequence, requiring a proof of termination for sum is not only
cumbersome, it is actually redundant; imposing it to the user is a bad design choice.

For those reasons, we decided to resort to a custom elaboration which allows defining
partial functions by means of a custom fixed-point operator; this allows us to defer the
proof of termination from definition time to proof of correctness time; we actually state
and prove theorems of total correctness. The technique we present here is adapted from
Bertot et al. [416], which uses Knaster-Tarski’s fixed point theorem to encode partial
functions in Coq. Their approach requires proving that function bodies are monotonous
and continuous, which is tedious to do by hand. Our contribution is to make this
process automatic by implementing a custom elaboration and remarking that those
proofs are essentially guided by the syntax. We now present how we implemented this
in Lean; the implementation in HOL4 was slightly different and suffered from several
limitations as we could not leverage dependent types.

A Simple Example

We will use the following definition as a running example. The function id is the identity
if its input is positive, and diverges otherwise; because it is not structurally terminating,
it doesn’t type-check in Lean.

def id (x : Int) : Result Int :=
if x = 0 then ok 0
else do

let x ← id (x - 1)
ok (x + 1)

A common technique to turn a non-terminating function into a terminating one is to
use a notion of fuel [417]: the function receives as additional parameter a natural number
which decreases at each recursive call. If the fuel reaches 0, the function evaluates to
an error value; as a consequence, one must supply a fuel which is big enough upon
calling the function. By construction, this makes the function structurally terminating
in the fuel, and thus accepted by the theorem prover. We apply this technique to the id
function, leading to id' below:
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def id' (n : Nat) (x : Int) : Result Int :=
match n with
| 0 => div -- No more fuel!

| succ n' => -- There remains fuel: continue normally

if x = 0 then ok 0
else do

let x ← id' n' (x - 1) -- The recursive call uses the decreased fuel

ok (x + 1)

If this technique allows us to make Lean accept the definition, it has the important
drawback of forcing us to manipulate a cumbersome fuel parameter in the proofs. But
the situation is not lost, especially if we notice that what we really want is not id', but
the limit of id' when the fuel goes to infinity. Fortunately, we can easily do so by using
Hilbert’s epsilon operator.

The epsilon operator takes as input a predicate P over a non-empty type a. It
evaluates to an element of a which satisfies P if such an element exists, and to an
arbitrary element of a otherwise. Equipped with this operator, we can easily define the
least upper bound of a predicate P operating over natural numbers; we just ask for a
number satisfying P , and such that no smaller number satisfies P :

def least (P : Nat ! Prop) : Nat :=
epsilon (P n ^ (8 m, m < n ! ¬ P m))

By using this least operator, we can now re-define id in terms of id', so that it uses
the smallest fuel (if it exists) such that id' doesn’t evaluate to div:

def id (x : Int) : Result Int :=
id' (least (� n => id' n x 6= div)) x

We managed to remove the fuel parameter from id, but its definition has now
become very involved: it is unclear how to reason about this auxiliarly id' definition in
the presence of this least predicate. Our final trick is that we can actually prove the
following unfolding lemma:

theorem id_unfold (x : Int) :
id x =

if x = 0 then ok 0
else do

let x ← id (x - 1)
ok (x + 1)

This unfolding lemma states that if id is not definitionally equal to its (expected)
unfolding, it is actually provably equal. If we save this unfolding lemma in Lean so
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that it gets applied when one needs to unfold id, the user will not even need to be
aware of the details of the encoding of id; the function will appear to have the expected
definition, except it is actually partial.

We might then want to prove the following property about id, namely that it is equal
to the identity if i is positive. The proof is performed by induction on |i|; importantly,
by proving that id_eq evaluates to a result which is different from div, we actually prove
at the same time that the function terminates for all positive inputs:

theorem id_is_id (x : Int) (h : x � 0) : id x = ok x := ... -- proof omitted

By stating this theorem in a slightly different manner, we could also prove a partial
correctness property:

theorem id_is_id (x : Int) (h : x � 0) : 8 y, id x = ok y ! y = x := ...

A General Fixed-Point

We now generalize what we have shown above. A crucial element which makes our
approach applicable is that all the functions generated by Aeneas live in an error
monad; i.e., they use Result in their output type. We show the definition of the type
Result below:

inductive Result (a : Type) :=
| ok (v: a) | fail | div

The type Result has three cases. The first two cases, ok for successful computations,
and fail for executions which fail (i.e., panic), do not deserve scrutinee. The important
case is div, which we use for diverging executions. We can easily implement a monad
for Result, which propagates the fail and div cases (omitted here). Because we want to
factor definitions out, we define once and for all a fixed-point operator fix_fuel below:

def fix_fuel {a: Type} {b : a ! Type} (n : Nat)
(f : ((x:a) ! Result (b x)) ! (x:a) ! Result (b x)) (x : a) : Result (b x) :=
match n with
| 0 => div
| n + 1 => f (fix_fuel n f) x

The operator fix_fuel takes as inputs a fuel n and a functional f. The parameter
f stands for the body of the function we wish to encode, and receives as input a
continuation that it uses for the recursive calls; as such it is not itself recursive. The
fix_fuel operator then recursively calls f until it runs out of fuel. Importantly, we defined
the output type of f (b) to depend on its input (a) in order to support polymorphic
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functions; because the use of this fixed-point operator requires us to currify functions,
we need to pack the types with the input arguments, meaning the output type can be
polymorphic only if it is dependent in the input1. We can finally define a fix operator,
which takes the limit of fix_fuel when the fuel goes to infinity:

def fix (f : ((x:a) ! Result (b x)) ! (x:a) ! Result (b x)) (x : a) :
Result (b x) :=
fix_fuel (least (� n => fix_fuel n f x 6= div)) f x

Equipped with fix, we can easily define the id function as follows:

def id_body (k : Int ! Result Int) (x : Int) : Result Int :=
if x = 0 then ok 0

else do
let x ← k (x - 1)
ok (x + 1)

def id (x : Int) : Result Int := fix id_body

There now remains to prove the unfolding equation. Here, we use Knaster-Tarski’s
fixed point theorem: if f is monotonous and continuous, we get the fixed-point equation:
fix f = f (fix f); this trivially gives us the unfolding theorem we want.

More precisely, we define a validity predicate over function bodies as follows.

def result_le {a : Type} (x1 x2 : Result a) : Prop :=
match x1 with
| div => True
| fail _ => x2 = x1
| ok _ => x2 = x1

def arrow_le {a} (k1 k2 : (x:a) ! Result (b x)) : Prop :=
8 x, result_rel (k1 x) (k2 x)

def is_mono {a} (f : ((x:a) ! Result (b x)) ! (x:a) ! Result (b x)) : Prop :=
8 k1 k2, arrow_le k1 k2 ! arrow_le (f k1) (f k2)

def is_cont {a} (f : ((x:a) ! Result (b x)) ! (x:a) ! Result (b x)) : Prop :=
8 x, (8 n, f (fix_fuel n f) x = div) ! f (fix f) x = div

def is_valid {a} f := is_mono f ^ is_cont f

1The real definition of fix_fuel is actually slightly different to make the encoding of polymorphic
functions and mutually recursive definitions more straightforward; we omit those details here and refer
the interested reader to the implementation.



256 Evaluation

The predicate result_le states that two values of type Result are in relation if they
are equal, or the first one is equal to div; it defines a partial order over elements of
type Result. The predicate arrow_rel lifts this partial order to functions. Finally, the
monotonicity predicate is_mono is satisfied for all functions which are increasing for
this order. We did not define the continuity predicate is_cont the standard way, but
rather in a manner more amenable to the proofs we needed to perform; more specifically,
it allows us to take the limit of fix_fuel n f in f (fix_fuel n f) x, which is the difficult
part in the proof of the fixed-point equation. We finally state that a function body is
valid if it is both monotonous and continuous (predicate is_valid), and prove the target
fixed-point theorem (the proof requires the use of the excluded-middle):

theorem fix_eq (f : ((x:a) ! Result (b x)) ! (x:a) ! Result (b x))
(Hvalid : is_valid f) :
fix f = f (fix f)

Proving Monotonicity and Continuity

As stated above, the unfolding equation for id immediately derives from this fixed-point
theorem. However, applying it requires proving that the definition id_body is valid,
i.e., is monotonous and continuous. We finally observe that the property of being
monotonous and continuous is mostly syntactic; intuitively, it should be satisfied as long
as we do not “open” the error monad instead of using the monadic binding we defined,
something which the functions output by Aeneas never do. As a consequence, we can
make such proofs straightforward by stating and proving monotonicity and continuity
theorems for the combinators of our language (e.g., bind). In order to pave the way for
those theorems, we now define monotonicity and continuity predicates for expressions
rather than functions.

def exp_is_mono {a b c} (e : ((x:a) ! Result (b x)) ! Result c) : Prop :=
8 k1 k2, karrow_rel k1 k2 ! result_rel (e k1) (e k2)

def exp_is_cont {a b c} (k : ((x:a) ! Result (b x)) ! (x:a) ! Result (b x))
(e : ((x:a) ! Result (b x)) ! Result c) : Prop :=
(Hc : 8 n, e (fix_fuel n k) = .div) !
e (fix k) = .div

def exp_is_valid {a b c} (k : ((x:a) ! Result (b x)) ! (x:a) ! Result (b x))
(e : ((x:a) ! Result (b x)) ! Result c) : Prop :=
exp_is_mono e ^
(is_mono k ! exp_is_cont k e)
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The predicate exp_is_mono is the same as is_mono except that we slightly tweak
the type of the input (e). The predicate exp_is_cont is more interesting. As it must
operate over a sub-expression of a function body, it receives two inputs: the function k,
which stands for the current function body, and the function e, which stands for the
sub-expression currently under scrutiny and which itself receives as input a continuation
for the recursive calls. The predicate exp_is_valid is also slightly subtle, in that it
requires the expression under scrutiny to be continuous only if k is monotonous.

Those auxiliary predicates allow us to prove predicates which operate over the
primitive combinators of our language. For instance, we can easily prove a theorem
about the monadic bind:

theorem expr_is_valid_bind {a b c}
{k : ((x:a) ! Result (b x)) ! (x:a) ! Result (b x)}
{g : ((x:a) ! Result (b x)) ! Result c}
{h : c ! ((x:a) ! Result (b x)) ! Result d}
(Hgvalid : is_valid_p k g)
(Hhvalid : 8 y, is_valid_p k (h y)) :
is_valid_p k (� k => do let y ← g k; h y k)

This theorem simply states that a bind expression is valid (i.e., monotonous and
continuous) if its sub-expressions are valid. Similarly, an if then else expression
is valid if its branches are valid, etc. Proving that a function body is valid then
simply requires recursing over its sub-expressions to properly combine lemmas like
expr_is_valid_bind.

Custom Elaboration

The last step is to automate the elaboration and the proofs of validity. To do so,
we defined a keyword divergent which, if present, triggers a custom elaboration. This
elaboration triggers after parsing and type-checking, but before the definition is sent
to the Lean kernel; doing so is relatively straightforward because, at the exception of
its kernel, Lean is implemented in Lean itself, meaning we can easily hook ourselves
into the compiler. We can then modify the definition to rewrite it in terms of the fix
operator we defined above, prove on the fly the validity theorem we need, and apply
the fixed-point equation to get and save the unfolding theorem. Thanks to this custom
elaboration, all the steps we described above are automatically performed if we simply
write the definition below:

divergent def id (x : Int) : Result Int :=
if x = 0 then ok 0
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else do
let x ← id (x - 1)
ok (x + 1)

Limitations and Future Work

Our elaborator currently supports a wide range of functions, including n-ary, mutually
recursive, and non-uniform polymorphic functions. The version of Knaster-Tarski’s
fixed-point theorem we use above however imposes restrictions on the class of functions
we can support; in particular we need their body to be continuous. We could lift this
limitation and only require their bodies to be monotonous if we used a different version,
which requires operating over a complete lattice; the Mathlib library actually has a fixed-
point theorem for complete lattices. For instance, recent work studying the problem
of encoding partial functions in Coq uses a similar encoding, which doesn’t require
the continuity property [417]. Updating the development to use a different fixed-point
would only require minimal modifications. More specifically, as the elaboration and
the proof of the validity theorems for the function bodies is guided by the syntax, the
elaboration itself would not need to change; we would only need to update the proof of
the primitive validity theorems about the language combinators.

We also currently have limited support for higher-order functions. For instance,
one might want to define the following identity function over a type Tree. Importantly,
tree_id calls itself recursively through the map function (which is the obvious monadic
map function):

inductive Tree (a : Type) :=
| leaf (x : a)
| node (tl : List (Tree a))

divergent def tree_id {a} (t : Tree a) : Result (Tree a) :=
match t with
| leaf x => ok (leaf x)
| node tl => do

let tl ← map tree_id tl
ok (node tl)

Proving that tree_id satisfies the validity property in the presence of this recursive
call is non-trivial, and requires a generic validity theorem for map. As of today, we
solved the issue by proving validity lemmas by hand over functions such as map, and
leveraging Lean’s extensible state and attribute system to store them, so that our
custom elaboration above can use them. As a consequence, this only works if the map
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function above is hand-written in our standard library, and not generated by Aeneas;
we intend to make this mechanism more general in the future. More specifically, we
proved the following (slightly simplified) lemma for the map function:

@[divergent]
theorem map_is_valid {a b c d}

{f : (a ! Result (b a)) ! d ! Result c}
(k : (a ! Result (b a)) ! a ! Result (b a))
(HfValid : 8 x1, exp_is_valid k (fun kk1 => f kk1 x1))
(ls : List d) :
is_valid_p k (� k => map (f k) ls)

By annotating map_is_valid with the divergent attribute, which we implemented
for this purpose, we save this lemma in a database. During the custom elaboration
and when proving a validity property, whenever we reach an application we check if
there exists an applicable lemma from this database; for instance, when elaborating
tree_id above, we lookup the lemma map_is_valid when reaching the sub-expression
map tree_id tl. We then recursively prove the premises of this lemma (here, HfValid),
which allows us to accept the definition tree_id above.

14.3.2 Forward Instantiations and scalar_tac

We now describe some preliminary work aiming at building basic blocks to implement
custom automation. In particular, we describe a procedure which automatically instan-
tiates and introduces lemmas by using the variables and assumptions available in the
context. Automatically instantiating lemmas is not novel; for instance, the auto tactic
in Coq and Isabelle/HOL performs similar instantiations, and we actually borrowed
ideas from the aesop tactic [418] for our implementation. The aim of this section is to
report how we leveraged Lean’s features to implement a flexible system, and how we
used it to implement the scalar_tac tactic for linear arithmetic proofs.

When implementing automated procedures, one often needs to automatically instan-
tiate lemmas. A convenient mechanism for this purpose is given by SMT patterns [419].
For instance, in F?, one can annotate a lemma with a pattern: the lemma gets automat-
ically instantiated whenever Z3 finds a matching term in the context. Implementing a
similar mechanism is straightforward in Lean, and was actually done by aesop2. In our
case, we leverage the fact that Lean has an extensible state and a system of attributes to
define a saturate attribute, which receives a name and a pattern. The pattern controls

2We are currently not using aesop’s implementation because of minor performance issues, but intend
to use it in the future.
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how the lemma gets applied, while the name allows us to group patterns together.
For instance, we can annotate the theorem below, which states that the length of the
concatenation of two lists is the sum of their lengths:

@[saturate (set := ListSet) (pattern := l0 ++ l1)]
theorem length_append {a} (l0 l1 : List) :

length (l0 ++ l1) = length l0 + length l1 := ...

The theorem gets saved in a map from (rule set) names to discrimination trees, for
efficient matchings. In the present case, we save length_append in the discrimination
tree for the set ListSet, by introducing a mapping from the expression l0 ++ l1 to
length_append, where l0 and l1 are variables (which can thus match any term).

We can now use the saturate tactic3 to automatically apply this lemma. For
instance, let’s assume the expression l0 ++ (l1 ++ l2) appears in the context. By
using saturate [ListSet] we can apply all the lemmas for the rule set ListSet, introducing
two assumptions in the context: length l0 (l1 ++ l2) = length l0 + length (l1 ++ l2),
and length (l1 ++ l2) = length l1 + length l2. As Lean supports adding attributes
locally, so that an attribute is only applied for the span of a module, we can mark
lemmas with the local saturate ... attribute, so that they get automatically applied for
the proofs in a single file, but not elsewhere; this kind of features is very useful to tweak
the automation as we will see later.

We now turn to the scalar_tac tactic, which is a tactic we implemented to automati-
cally discharge arithmetic goals. Arithmetic proof obligations are numerous when doing
program verification; for instance, every addition of two machine integers requires check-
ing for overflows, while every array access requires checking that the index is in bounds.
As a consequence, having good solvers for linear arithmetic goals is paramount, and we
observed that the ability of SMT solvers to efficiently solve linear arithmetic goals is one
of the reasons why they are so powerful when doing program verification. In the context
of implementing custom automation for interactive theorem provers like Lean, we posit
we can design reasonably efficient decision procedures with simple techniques. Under
the hood, scalar_tac massages the goal by applying a set of well-chosen simplification
lemmas, uses the saturate tactic to do some forward reasoning, then calls omega, the
Lean tactic to reason about linear-arithmetic goals. The scalar_tac tactic is in effect
simple, yet quite powerful, especially because we can extend the set of lemmas that
automatically get instantiated through saturate. We defined the scalar_tac attribute
for this purpose, which is just some syntactic sugar. For instance, we annotated the
lemma below, which allows us to automatically introduce scalar bounds in the context,
so that scalar_tac can reason about machine scalars:

3The name is taken from aesop.
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@[scalar_tac x]
theorem Scalar.bounds {ty : ScalarTy} (x : Scalar ty) :

Scalar.min ty  x.val ^ x.val  Scalar.max ty := ...

We also annotated a set of lemmas to reason about lists, like length_append above.
More importantly, we can leverage the local attributes to temporarily extend the
capabilities of scalar_tac. For instance, the notorious instability of Z3 when reasoning
about non-linear arithmetic regularly led to breakages in the HACL? library. In particular,
in HACL? we often need to prove that the product of two positive numbers is positive;
such proof obligation invariably fails in CI at some point, eventually forcing us to
deactivate the non-linear arithmetic heuristics in the broken proofs while manually
inserting calls to the proper lemma. This proved to be extremely cumbersome in
practice, and particularly frustrating as such proof obligations are extremely simple. In
the present case, we can easily provide the required lemma to scalar_tac:

@[local scalar_tac x * y]
theorem pos_mul_pos_is_pos (x y : Int) :

(x < 0) _ (y < 0) _ (0  x * y)

The lemma is written in a disjunctive form to make it always applicable for pattern
x ∗ y, leveraging the fact that omega can reason about disjunctions; we could write it
as an implication 0  x ! 0  y ! 0  x ∗ y, but its application would become brittle
as it would require the exact assumptions 0  x and 0  y to be in the context. Of
course, we may not want to always use it as some other proofs might require more
general reasonings; hence the use of the local keyword, which allows circumscribing its
application to the proofs of the current module. The possibility of locally extending the
sets of lemmas used by scalar_tac proved very useful in the use-cases we study below
(Section 14.4).

14.3.3 Hoare-Logic Style Proofs and the progress Tactic

We reviewed some basic decision procedures in the previous section; let us now turn to
the problem of actually verifying programs. A natural way of doing program verification
is to reason in a Hoare-Logic style, by specifying functions as having pre- and post-
conditions. In our case, we want the proof experience to feel like a debugging session,
by which proving a theorem about a function requires interactively stepping through
the function calls in its body and, for every call, proving its pre-condition while having
the context available for inspection, before continuing with a context augmented with
the proper post-conditions. We want to automate as much administrative work as
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possible as well as the mundane proof obligations, so that the user can focus on the
interesting parts of the proofs. For this purpose we implemented the progress tactic,
which inspects the goal to identify the next function call to consider, automatically looks
up and instantiates the relevant lemma, attempts to prove its pre-condition, and finally
updates the context. Implementing such a tactic to automatically lookup theorems is
not novel [420]. However, the progress tactic we implemented for Aeneas has specific
features; we now illustrate how it helps in the proofs.

For instance, let’s assume we are given the following goal:

1 x : U32
2 y : U32
3 h : "x + "y  U32.max
4 ---------------------

5 (do -- the function body

6 let z ← x + y
7 let v ← f z
8 ...) -- more function calls (omitted)

9 = ... -- the post-condition (omitted)

The context contains two variables x and y of type U32 (lines 1-2), and the assumption
that their addition doesn’t overflow (3). This addition operates over "x and "y, which
are x and y seen as unbounded mathematical integers; this means in particular that "x
+ "y can not overflow. The expression below the horizontal line (lines 5-9) is the goal
we want to prove. Importantly, proving this goal requires reasoning about the scalar
addition x + y (line 6), which operates over machine integers and can overflow. In
order to progress in the proof we can use the following lemma, which states that if the
addition of x and y, seen as unbounded mathematical integers, doesn’t exceed U32.max,
then the addition succeeds with the expected result:

theorem U32.add_spec {x y : U32} (h : "x + "y  U32.max) :
9 z, x + y = ok z ^ "z = "x + "y

We can instantiate this lemma for x and y, prove its precondition, decompose it
and simplify the goal: x + y gets substituted with ok z, the expression let z  ok z
simplifies, etc. This requires writing the following proof script:

1 have 〈 x1, hEq, hPost 〉 := @U32.add_spec x x (by scalar_tac)
2 simp [hEq]

We get the following goal:
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1 x : U32
2 y : U32
3 h : "x + "y  U32.max
4 h1 : x + y = ok z
5 h2 : "z = "x + "y  U32.max
6 ---------------------------

7 (do -- the function body

8 let v ← f z
9 ...) -- more function calls (omitted)

10 = ... -- the post-condition (omitted)

Doing those operations manually for every function call in the proof quickly becomes
cumbersome. Instead, we implemented the progress tactic, which inspects the goal,
notices that the next function call to consider is x + y, automatically looks up the
lemma U32.add_spec and instantiates it, proves its precondition, and updates the goal
by introducing the variable z : U32 together with the assumption h : "z = "x + "y in
the context; dedicated syntax allows the user to choose the name of the variables and
assumptions introduced by the tactic.

Of course, whenever the user proves a correctness theorem, they naturally want to
allow progress to automatically look it up in the subsequent proofs. We allow doing this
by annotating theorems with the progress attribute. In fact, this is the way we handle
theorem U32.add_spec shown above to progress: by annotating it with the progress
attribute, we insert a mapping from expression x + y (where x and y are variables) to
theorem U32.add_spec in the database of theorems.

The progress tactic can easily handle several patterns commonly found in the proofs.
When proving a theorem about a recursive function, progress is aware of the theorem we
are currently proving; this allows it to recursively use the theorem to handle recursive
function calls appearing in the goal. This works very well in combination with Lean’s
termination_by and decreasing_by clauses which allow independently handling the
problem of termination, instead of preemptively generalizing the theorem and applying
the proper induction principle upon starting the proof.

The progress tactic also uses a heuristics which is simple, yet quite efficient in practice,
to automatically instantiate variables. For instance, let’s suppose we implement a binary
tree in Rust and want to prove that the insert function is correct; in particular, we want
to interpret the binary tree as a set. There are several ways of writing the specification
of such function; we show a possibility below, which is written mostly for the purpose
of illustration:

1 theorem insert_spec {↵ : Type} (ordInst: Ord ↵)
2 [ordSpec : OrdSpec ord] -- specification for the order



264 Evaluation

3 (x : ↵) (t : BTree ↵) (s : Set ↵) :
4 inv s ! -- an invariant about s

5 isSet t s ! -- t can be interpreted as the set s

6 9 t', insert ordInst x t = ok t' ^ -- the call succeeds

7 inv s ^
8 isSet t (s [ {x}) := ...

The theorem above states that, if s satisfies some invariant (which, say, gives a
bound on its size), and if the binary tree t can be interpreted as a set s through the
predicate isSet, then inserting x in t successfully evaluates to a new tree t', which
satisfies the invariant inv and can be interpreted as the set s [ {x}. After proving
this theorem, we might want progress to use it in a subsequent proof, to reason about
a call to insert. Importantly, when applying this theorem, progress will use the term
insert x t to infer how to instantiate the variables x and t. However, figuring out how to
properly instantiate s is more difficult. A simple solution is to instantiate s by matching
the pre-conditions (here, inv s and isSet t s) against assumptions in the context; for
instance, if it finds assumption inv s0, it will instantiate s with s0. However, this can
lead to spurious instantiations: for instance, there might be two assumptions h0 : inv s0
and h1 : inv s1, about different sets; we need to pick the proper one. Because of this, we
use a slightly different heuristics: we instantiate a variable by matching a pre-condition
against the assumptions in the context only if there is a single matching assumption.
In the present case, we would ignore the pre-condition inv s and move to the next one,
isSet t s, which is more likely to unambiguously give us an instantiation for s; as a last
resort we simply introduce a fresh meta-variable for s. In practice this simple heuristics
provides convenient automation while avoiding spurious instantiations, and proved very
useful for the use cases we describe later. In the future, we also intend to allow the user
to have more precise control over the instantiations, in case the heuristics do not lead
to the expected result.

As of today, the solvers used by progress to discharge pre-conditions are hardcoded;
importantly, we use the scalar_tac tactic that we described previously. In practice, it
already leads to an interesting proof experience; in the future, we intend to make this
set of solvers customizable by the user.

14.4 Case Studies

We applied the Aeneas framework to the verification of several (moderate) case studies,
each of which comprising a few hundreds lines of code.
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14.4.1 Hash Table, Backend Comparison

The most interesting use case is a resizing hash table written in 222 lines of Rust code,
and verified in F?, HOL4, and Lean. If this case study is small compared to, e.g., the
Noise? project, it already provides interesting insights about the proof experience we
provide, as well as about the differences between the backends we support.

The resizing hash table is equipped with insert, get (immutable lookup), get_mut
(mutable lookup) and remove. Each bucket is a linked list; insert replaces the existing
binding, if any; resizing is automatic once a certain threshold is reached. The functional
property we prove is that the hash table functionally behaves like a map. In this regard,
the interesting function is insert. Interestingly, such a function leverages many low-level
features of Rust: we have to be wary of arithmetic overflows when computing the new
size, we mutably borrow the slots vectors for in-place updates, and move elements so as
not to perform reallocations, etc.

By virtue of working with a (translated) pure program, we were able to focus on
the functional behavior of the hash table and the important proof obligations, such as
the absence of arithmetic overflows, rather than memory reasoning. This provided a
stark contrast with our previous experience working with Low?. In practice, the proofs
of the hash table did not cause any fundamental difficulty and were straightforward.
We however noted interesting differences between the different backends.

F? proved good at automating the mundane proof obligations, in particular those
related to arithmetic reasonings; SMT automation was in particular very good at
unfolding invariants, combining the relevant facts together, and finally finishing the
proof by using its linear arithmetic solver. As Z3’s heuristics for non-linear arithmetic
proved too unstable, we resorted to writing manual proof scripts for the non-linear
arithmetic proofs, which included in particular reasoning about the length computation
for the resizing operation. Quite surprisingly, the context of Z3 grew quicker than
expected. In order to keep the proof time low and the solver reactivity high we did the
proof in two steps: we first proved that the implementation of the hash table refines a
pure specification, then proved that the pure specification implements an ideal map.
We posit that a better encoding of the proof obligations to Z3 and that a better control
of the context by means of opaque and reveal instructions, as is usually done in Dafny,
might mitigate this issue.

HOL4 compensates for the lack of SMT automation with its powerful simplification
mechanism and the possibility of writing custom automation, allowing us to write a
progress tactic which provided a smooth proof experience. As we noted, one of SMT
automation’s strength is its ability to automatically unfold definitions and combine
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relevant facts. In the case of HOL4, we had to specify which definitions (for instance,
invariants) to unfold by using the simplifier, before calling more powerful decision
procedures (for arithmetic for instance); we note that manually unfolding an invariant is
similar to using a reveal instruction in Dafny. Being an LCF prover, which in particular
does not require building proof terms, the HOL4 tactics are also extremely fast; we
expect the same from other provers like Isabelle/HOL. The proofs involving non-linear
arithmetic were also easily done, this time leveraging the interaction with the proof
assistant, in particular because it allows inspecting the context. One issue arose however
from the fact that we could not control the context as much as needed, as for instance
HOL4 does not allow naming assumptions. Rather than referring to assumptions and
variables in a precise manner like in Coq, HOL4 enforces a style by which the user refers
to assumptions by using patterns, which are supposedly more resilient to proof changes.
This works well in many situations, but we sometimes wished for more control and as a
result, similarly to F?, we did the proofs in two steps so as to keep the context small.

Lean also provides a powerful simplification mechanism, which is actually more
flexible than the one provided by HOL4 when it comes to conditional rewriting, i.e.,
rewriting with a theorem which has a premise. As we noted in the previous sections,
Lean’s meta-programming facilities gave us a lot of flexibility. The progress tactic,
that we co-developed while doing the use-cases, proved very powerful. We note once
again that program verification requires solving a lot of mundane proof obligations,
which are often discharged by simple decision procedures such as linear arithmetic
solvers; in the present case, this allowed progress to automatically discharge many
pre-conditions. We also crucially leveraged the extensibility of scalar_tac to reason
about non-linear arithmetic and to automatically introduce facts deriving from the
invariant. For instance, we introduced the following local rule, which allows scalar_tac
to derive from the invariant, without unfolding it, the fact that the number of slots
is strictly positive; such rules allow finely controlling the context by only introducing
relevant facts:

@[local scalar_tac h]
theorem inv_scalar_facts {hm : HashMap ↵} (h : hm.inv) :

0 < hm.slots.length ^ -- the number of slots is > 0

... -- omitted facts

The hash table revealed some limitations of the current version of the Lean backend,
in particular with regards to the lack of automation. A procedure to automatically
instantiate universally quantified assumptions appearing in the context would have made
the proofs smoother. We also often had to do case disjunctions by hand; for instance,
over the fact that two keys may (or not) be equal. We note that HOL4 suffered from
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the same issues, as probably does any other interactive proof assistant. By contrast
SMT solvers can automatically instantiate universal quantifiers, though it requires
careful control of the context, and are good at automatically doing case disjunctions
and eventually back-tracking; as a consequence, such reasoning was (mostly) automatic
in F?, though we sometimes had to introduce assertions of a specific shape to guide
the instantation. We leave the implementation of such decision procedures in Lean,
potentially specialized for some class of problems, as future work.

Finally, despite the fact that the Lean backend is in a preliminary state, in particular
with regards to the level of automation which is as of today very primitive, we note
that it already provides a rather smooth proof experience. More specifically, it provides
a high level of control over the context, can automatically discharge many boring proof
obligations, and allows resorting to more manual reasonings to finish the rest of the
proofs. An interesting consequence is that we were able to comfortably do the proofs
of the hash table in one step, while in HOL4 and F? we felt the need to introduce an
intermediate refinement. This has made Lean our reference backend for Aeneas.

14.4.2 I/O and External Dependencies

We now discuss some features permitted by Aeneas’ translation. Real-world appli-
cations rely on external libraries and often need to interact with the external world
through I/O or sockets. We elegantly model interaction with the outside environment
using opaque modules, and a state type that combines memory, IO and the outside
world.

In other words, Aeneas allows reasoning about such applications by lifting the
generated code into a combined-state + error monad, and relying on module signatures
to model the interaction with external functions.

When we designate a module as opaque, Aeneas treats all the definitions coming
from this module and reachable from the root module as opaque, and requests the
user to provide models for those definitions. The user is then free to provide models
for those declarations, or simply state assumptions by means of assumed lemmas. (In
practice, we simply import a module that the user is required to write by hand, and
optionally initialize this module with axioms.) This feature illustrates why a modular,
type-directed translation like Aeneas’ is important: the user doesn’t need to reveal any
information about the function’s definition (or model its behavior using a specification
language); rather, the user can work post-translation in the comfort of their favorite
theorem prover. Moreover, while it is possible to add annotations to function signatures
in a local crate, this possibility falls short when it comes to dealing with external
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dependencies, over which the user has no control! Handling this oftentimes requires
tediously wrapping such dependencies in properly annotated modules. In contrast, this
work, and Charon and Aeneas, simply treat the external dependencies as opaque by
looking up the types and functions that are needed in the (non-opaque modules of the)
local crate, and generating corresponding declarations.

Finally, we give the possibility of using a state-error monad to introduce stateful
reasoning when this is really needed, for instance when the code uses I/O functions.
The state type, which models the external world, is also an opaque type for which the
user is free to provide a model or write assumptions, in a fashion similar to opaque
modules. In practice, this gives us a lightweight effect system.

Let us illustrate those possibilities with the following example.
We set out to serialize our earlier hash table to the disk. To account for this, we

author serialize and deserialize functions in a separate opaque module outside of the
scope of verification. We mark the module as opaque, meaning Aeneas generates the
following declarations.

First, insert_on_disk, below, simply loads the map from the disk, inserts a new
entry, and stores the updated table back on disk.

fn insert_on_disk(key: Key, value: u64) {
let mut hm = deserialize();
hm.insert(key, value);
serialize(hm);

}

Aeneas requests the following declarations to model the disk state and the serialization
and deserialization functions.

def State : Type := ... -- to be filled by the user

def deserialize (s : State) : Result (State × HashMap U64) := ...
def serialize (hm : HashMap U64) (s : State) : Result State := ...

Those definitions generate the following translation of insert_on_disk:

def insert_on_disk (key : Usize) (value : U64) (s : State) : Result State := do
let (hm0, s1) ← deserialize s
let hm1 ← insert U64 hm key value
serialize hm s1

Given those declarations, the user is free to write models by filling their bodies, or
simply assume them as axioms, together with properties to reason about them.
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Related Work

Software Verification. There exists plenty of work on software verification; as the
field is extremely large, we refer the interested reader to surveys and SoKs [421–424],
and focus below on work direcly related to Aeneas. We also refer the reader to Part II
for work related to the verification of cryptographic implementations.

Electrolysis. Electrolysis [242] most resembles Aeneas in that it translates a (quite
impressive) subset of Rust programs to pure models extracted in the Lean 3 [425]
proof assistant. It relies on lenses to model mutable borrows, and as such comes with
restrictions; for instance, functions may only return borrows to their first argument.
Electrolysis does not come with a formal model, and thus does not make a case for
semantic correctness. As such, it resembles a very pragmatic “transpiler” rather than a
compiler; for instance, traits map to type classes, because they, at a high-level, work in
a similar fashion.

Hacspec, hax. Hacspec [426] is an attempt at using a pure subset of Rust to write
succinct, executable, formal specifications for cryptographic components. The goal is to
allow developers, cryptographers and proof engineers to share a specification language
which is non-ambiguous and readable by non-experts. Hacspec formally defines a subset
of Rust, its semantics, and a type-system; as this subset is designed to be (mostly)
pure it does not support creating (shared or mutable) borrows, but includes variable
re-assignements and for loops iterating over integers. Specifications written in the
hacspec subset can be compiled to pure specifications in F?, for the purpose of being
used in proofs about low-level implementations written in, e.g., Low? [322]; hacpsec has
been applied to the formalization of a number of cryptographic primitives [427] and of
the TLS 1.3 protocol [428]. As the compiler attempts to generate code which is close to
what the programmer writes, it consumes the Rust surface AST, while Aeneas operates
on MIR; as a consequence, hacspec must redo part of rustc’s work such as type inference.

269



270 Related Work

The hacspec subset being essentially pure, the compilation to F? specifications is also
almost a one to one translation.

The hax framework [429] is hacspec’s successor, and attempts both to be a speci-
fication language, in the spirit of hacspec, and a verification framework which works
by generating pure models of Rust implementations, in the spirit of Electrolysis and
Aeneas. The hax compiler resembles a pragmatic compiler very much like Electrolysis;
as such its translation is trusted. Hax also consumes the THIR (“Typed High-level
IR”) output by rustc, while Aeneas consumes the lower-level MIR (“Mid-level IR”).
These have different trade-offs; on our side we decided to operate on the MIR as it has
fewer constructs, yielding a simpler formalism. Charon and hax actually share part of
their frontend in order to factor out the burden of interacting with rustc; for instance,
they share the same code to interact with rustc’s trait solver. Hax allows doing proofs
of functional correctness by extracting pure models to F? and Coq, but also security
proofs by generating models for ProVerif. It allows writing annotations directly in the
Rust code, which are then extracted to pre- and post-conditions, assertions and lemma
applications in the generated F? code. Hax supports the use of shared borrows but,
similarly to Electrolysis, its treatment of mutable borrows is not general and rather
relies on the detection of some common, yet expressive patterns. For instance, it does
not generally allow functions to return mutable borrows, but supports an interesting
class of loops manipulating (mutable) iterators, that are not yet supported by Aeneas.
The hax framework has been applied to several cryptographic applications, including in
particular a verified implementation of ML-KEM [430].

RustHorn. RustHorn [243] operates on the Calculus of Ownership and Reference
(COR), a Rust-like core calculus inspired by �Rust. Given a COR program, RustHorn
uses prophecy variables to compute a first-order logical encoding that can then serve
as a basis for reasoning upon the COR program. The encoding by means of prophecy
variables served as a source of inspiration for the treatment of mutable borrows in
LLBC. The RustHorn paper provides a proof of soundness and completeness of the
encoding. Specifically, the authors establish a proof of bisimulation between COR, and
the execution of a custom resolution procedure (dubbed SDLC) that mimics program
execution when executed over the logical encoding.

The main difference with our work is that COR already takes for granted the
ownership discipline of Rust, and materializes lifetimes within its program syntax: COR
features instructions for creating or ending a lifetime, and asserting that a lifetime
outlives another. One consequence is that COR cannot exhibit more behaviors than
SDLC, hence why the bisimulation can be established.

In contrast, our low-level language, PL, does not feature lifetimes, and as such
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exhibits more behaviors than LLBC. This means we can target the underlying execution
model that Rust programs run on, rather than taking lifetimes as an immutable, granted
analysis that we have to trust. A drawback is that we can only establish a forward
simulation in the general case. Second, we do not commit to lifetimes, nor to any other
particular implementation strategy of borrow-checking (e.g., Polonius [398]). Instead,
we declaratively state what ownership-related operations may be performed in LLBC.
It is then up to a particular borrow-checker implementation (e.g., Aeneas) to be proven
sound with regards to this semantics. Notably, LLBC is not deterministic, and several
executions may be valid simultaneously, e.g., by terminating borrows at different points
(eagerly or lazily).

To summarize, RustHorn focuses on establishing the soundness of a logical encoding
with regards to a model of the Rust semantics that assumes borrow-checking has been
performed and can be trusted; here, we establish that LLBC is a correct model of
execution for Rust programs, that LLBC# is a valid borrow-checker for the LLBC
semantics, and that LLBC#’s borrow-checking does indeed guarantee soundness of
execution for LLBC programs.

RustBelt. In a similar fashion, RustBelt [393] is built atop �Rust, a core calculus
that is already annotated with operations to create and end lifetimes. The operational
semantics of �Rust itself is given by translation; the lifetime operations are assumed to
be given by the Rust compiler. This impressive project focuses on a proof of semantic
typing, with two chief goals: first, prove the lifetime-based type system sound with
regards to the (lifetime-annotated) core language; second, use the semantic typing
relation to establish that pieces of unsafe code do satisfy the type they export.

Our work differs from RustBelt in several ways. From the technical standpoint,
RustBelt assumes lifetimes are given. Whether the lifetimes annotations are correct, and
whether they lead to a successful execution is irrelevant – if the input program features
improper lifetime annotations, this is outside of RustBelt’s purview. In contrast, we
attempt to determine what needs to be established from a semantic perspective in order
to borrow-check a Rust program, and prove that successful borrow-checking entails
safety of execution. From a goals standpoint, RustBelt attempts to understand the
expected behavior of a Rust program that features unsafe blocks, using semantic typing.
We do not consider unsafe code, but we intend to tackle this in future work.

RustHornBelt. The combination of RustHorn and RustBelt, RustHornBelt [397],
aims to establish that the logical encoding of RustHorn is sound with regards to �Rust.
RustHornBelt extends the methodology of RustBelt; at a very high-level, RustHornBelt
proves the encoding of RustHorn, but with �Rust instead of COR, and with a machine-
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checked proof instead of pen-and-paper. For the same reasons as above, we see this
endeavor as addressing a different problem than ours: RustHornBelt is concerned with
a logical encoding that leverages lifetimes as a central piece of information, rather than
giving a functional, semantic account of the borrow-checking and execution of Rust
programs.

SMT-Based Tools. Creusot [244] is a tool that follows the RustHorn approach to
generate proof obligations encoded by using prophecy variables, and that can then be
discharged to SMT. Their design chooses automated, intrinsic proofs: they introduce
an annotation language for specifications, wrap a large part of the standard library
in it, then rely on requires/ensures clauses and annotations to perform the proofs.
This style emphasizes a logical encoding as opposed to an executable specification,
one advantage being that they can easily require annotations for, e.g., loop invariants.
They support a large subset of Rust code, allowing them for instance to reason about
iterators [431]. It builds on RustHornBelt approach, and as such, benefits from its
formalization and mechanization. As mentioned by Matsushita et al. [397], there remain
some discrepancies, namely that RustHornBelt operates on a core language (instead of
surface Rust), and that Creusot does not use the predicate transformers RustHornBelt
relies on. Creusot has been used to verify several use cases such as: a SAT solver [432]
and an SMT solver [433].

Verus’ design choices [389] are very similar to Creusot’s. They generate pure proof
obligations that are sent to the Z3 SMT solver, though by using a simpler encoding
technique than prophecy variables, making their use of mutable borrows slightly more
restrictive; they however support the verification of unsafe code, which is not possible
directly within Creusot. Their pure encoding goes directly to the SMT solver and
is highly optimized to make the proof time smaller, where Creusot first generates a
WhyML program. With regards to the semantics of Rust, Verus contains a pen-and-
paper formalization, not about Rust itself, lifetimes, or borrow-checking, but rather
about the soundness and termination of their approach to specifications relying on
ghost permissions. As such, the proof for Verus answers a different question than our
proof of soundness for LLBC#, namely, whether their design on top of existing Rust
is sound. The proof remains of limited scope, only taking into account two possible
lifetimes. Remarkably, Verus has already been applied to the verification of several
realistic projects, including Kubernetes controllers [434], and a security module for
confidential VMs [435].

Prusti’s frontend [388] is very similar to Creusot’s and Verus’s, but their encoding of
proof obligations is different. The tool uses Rust’s type system to guide the application
of rules in Viper [391], which means they rely on the Rust borrow checker for lifetime
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inference but do not need to trust its results. Doing so, they automate the application of
memory reasoning rules and thus avoid general-purpose memory proof search. Creusot
and Verus, however, by virtue of their dedicated encodings that directly leverage lifetime
information, appear to offer better verification performance than the Prusti frontend
for the general-purpose Viper tool [244, §5.3]. Prusti also translates Rust programs
into Viper’s core logic; the soundness of verifying Rust code then depends on the
soundness of Viper, and of the translation itself. To the best of our knowledge, no
formal argument exists as to the soundness of the translation. Prusti has been used to
verify that a WebAssembly sandboxing runtime correctly enforces memory and resource
isolation [436].

Flux [437] uses liquid types [438] to reason about safe Rust programs. Unlike the
work mentioned above and which also leverages the automation provided by SMT
solvers, Flux does not attempt to verify deep functional correctness specifications, but
rather constrains the class of properties they can verify to enable a more lightweight
approach to verification. They currently have limited support for Rust patterns like
functions manipulating mutable borrows, but leverage the use of liquid types to efficiently
synthesize a large class of loop invariants, allowing the user to omit loop annotations.

The Move Prover (MVP) [439] is a formal verifier for smart contracts written in the
Move programming language [440], and which has been used to verify an implementation
of the Diem blockchain. Move uses a notion of (mutable) references which is very similar
to Rust’s borrows; in particular, there can’t be two live mutable aliases of the same
location at the same time. MVP leverages those aliasing constraints to generate pure
proof obligations from user-annotated code, which are then sent to an SMT solver.
Unlike other SMT-based tools we mentioned above, the generation of the verification
conditions is based on a translation mechanism which generates a pure, functional
model of the Move code. Interestingly, in the presence of functions (or expressions)
returning a mutable borrows, a pattern they refer to as “dynamic mutable references”,
they generate a model which looks almost like Aeneas’s backward functions. Designing
this translation also required them to implement the equivalent of a borrow-checker for
Move. Their handling of references however has some limitations compared to Aeneas’s
handling of mutable borrows: for instance, they track at most one mutable lifetime at a
time, and they do not handle recursive functions returning mutable borrows. They also
do not have a formal proof that their checker indeed provides memory safety.

Gillian-Rust. Gillian-Rust [441] is a verifier built on top of the Gillian symbolic
analysis platform [442]. It aims at verifying the type safety and functional correctness of
unsafe code. Interestingly, it is designed to be compatible with Creusot so as to allow a
hybrid verification approach: when necessary, Gillian-Rust can be used to reason about
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unsafe code, while Creusot’s pure encoding can be leveraged to reason more efficiently
about safe code.

RefinedC, RefinedRust. Our presentation of a low-level language equipped with a
system of permissions, followed by an embedding into a theorem prover, is reminiscent
of RefinedC [443]. RefinedC relies on magic wands to make up for the lack of borrows;
wands, by virtue of being very general, require the use of heuristics. RefinedC, however,
focuses on the subset of C code that obeys its permission discipline; and it relies on a
memory model in Coq rather than a functional translation. RefinedC is foundational,
and requires user annotations in an intrinsic style, while Aeneas generates a trusted,
pure translation for extrinsic proofs. Crucially, both RefinedC and Aeneas rely on the
fact that they never need to backtrack after applying rules. For RefinedC, this is made
possible by restricting the user annotations to a carefully crafted, yet extensible, fragment
of separation logic, along with alias types in the style of Mezzo’s permissions [444].
For Aeneas, we never backtrack because we leverage the way borrows work to lazily
terminate borrows. RefinedRust [445] follows the same approach as RefinedC but to
reason about unsafe code.

KRust and RustSEM. KRust [446] and RustSEM [447] introduce executable, core
semantics for Rust, formalized in the K framework. They both explicitly model lifetimes,
and explicitly model the memory for the purpose of supporting unsafe code.

Featherweight Rust. Featherweight Rust [448] is a formalization of a core subset
of Rust. It is inspired by Featherweight Java in that it emphasizes simplicity over
exhaustivity. As such, it only supports a small subset of Rust which for instance doesn’t
include loops or function calls. This formalization includes a type system together with
a proof of progress and preservation.

Other functional translations. [449] studies a problem similar to Aeneas by
introducing an imperative calculus together with a meaning-preserving translation of
programs written in this calculus into purely functional ones. The translation comes
with a proof of soundness. It differs from Aeneas in that it is store-passing, though
it can be quite fine-grained by relying on multiple store fragments. On our side, we
manage to completely remove all references to memory for a large class of programs by
means of our backward functions.

Mezzo. The Mezzo programming language [450] blends type system, ownership
and shape analysis. In a fashion similar to Rust’s borrow discipline, Mezzo draws a
distinction between immutable, shareable data and mutable, uniquely owned data. It
is expressive enough to support patterns such as in-place, tail-recursive concatenation
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operations over lists. However, it does not easily support the equivalent of functions
returning mutable borrows, which is the challenging case for LLBC#; with Mezzo, such
functions have to be implemented either in an indirect manner [403, §2.4], or by using
dynamic ownership tests [403, §2.5]. Mezzo is equipped with a syntactic proof of type
soundness [403], but for an operational semantics à la ML. The “merge operation” [444]
is akin to our join operation, though for a quite different type system which includes
singleton types, substructural typing, and multiple types for a given variable x (top,
“dynamic”, “singleton x”, and other degrees of folding/unfolding of a substructural type),
while on our side we focus on a linear type system with a mechanism of borrows. The
Mezzo merge algorithm is more sophisticated: it interleaves backtracking, quantifier
instantiation strategies, and folding of existential predicates. We perform backtracking
to reorganize environments when computing joins, but none of the others. We also
crucially leverage our join operation to symbolically execute loops; Mezzo, on its side,
being inspired by ML, does not have support for loops.

Shape Analysis. Perhaps more closely connected to this work is the field of shape
analysis [411, 451–453]. Very active in the 2000s, the goal was to design abstract
domains that would be able to infer shape predicates for pointer languages. Using
familiar notions of concrete and symbolic executions, the analysis would then be able to
identify bugs in programs via abstract interpretation. This has led to industrial tools
such as Meta (née Facebook)’s Infer [454].

We differ from these works in several ways. First, we operate in a much more
structured language than, say, C; these works traditionally operate over pointer lan-
guages, with NULL pointers, and untagged unions (anonymous sums). In our setting,
we can enforce much more discipline onto the original language, and benefit from a lot
more structure than languages like C may exhibit. However, this requires reasoning
about and proving the correctness of a non-standard, borrow-centric semantics, and
developing novel borrow-centric shape analyses, i.e., LLBC#. Second, our analysis does
not exactly fit within the static analysis framework, and is merely inspired by it. We
exhibit similarities in the design of our join operation, which just like in shape analysis
involves reconciling competing shapes, folding inductive predicates, and abstracting
over differing concrete values [411, 455].

Heapster. Heapster [456], just like Aeneas, attempts to extract pure code from low-
level programs, and also comes with a soundness proof [457]. In the case of Heapster, the
input is LLVM internal code, and the output is logical (non-executable) specifications
that are extracted to Coq. The user must guide extraction by adding type annotations
and loop invariants to their programs. Heapster also supports a notion of lifetimes,
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which is however only partially covered by the soundness proof.

Kani. Kani is a bounded model-checker for Rust, which relies underneath on the
C Bounded Model Checker [169]. Being a bounded model-checker, it can’t be used
to verify properties about programs with an arbitrary number of loop iterations or
recursive function calls. On the other hand, it can reason about unsafe code, and is
designed to be easy to use by regular engineers, and easy to integrate in CI.

Cogent. Cogent [240, 241] is a domain-specific language equipped with a linear type
system. The Cogent compiler produces: C code; a high-level Isabelle/HOL specification;
and a proof of refinement from the former to the latter. By virtue of producing an
Isabelle/HOL specification, Cogent seamlessly composes with existing developments in
that language, and can thus be integrated into a larger project, something Aeneas also
enables. However, unlike Aeneas, the Cogent compiler does not need to be trusted
since it produces a proof of translation correctness for each compilation run. We also
remark that the linear type system of Cogent is significantly less expressive than Rust’s;
notably, Cogent does not seem to allow an equivalent of mutable borrows.

Stacked Borrows and Tree Borrows. Stacked Borrows [395] give a semantics to
the notion of borrows in Rust, but sets out to achieve different goals than Aeneas:
namely, to provide a set of rules that Rust developers can follow and validate their
code against when writing unsafe code. The work comes with an extensive evaluation,
which establishes both that the tool can detect incorrect uses (bugs were found), and
that it can prove that some optimizations written using unsafe code are correct. This
work adopts a very low-level view of memory, and it is unclear whether it can be
used productively at the scale that we envision for Aeneas. The value of the work,
however, lies in its precise, memory-based semantics of borrows; we are evaluating the
feasibility of proving our semantics against it. Tree Borrows [396], the successor of
Stacked Borrows [395], attempts to provide a semantics for correct borrow handling
in the presence of unsafe code. This allows detecting, at run-time, violations of the
contract (undefined behavior). Tree Borrows, unlike this work, operates at runtime by
tracking permissions at the level of memory cells. We operate statically, and focus on
safe code, proposing a new notion of borrow-checking that we prove to be semantically
sound.

Oxide. The unpublished work-in-progress Oxide [458] attempts to formalize the type
system of Rust. It targets a language which is close to Rust’s surface AST, while on
our side we target the lower-level MIR. It also attempts to give a more traditional
interpretation of borrow-checking as a type system, while on our side we rely on a
symbolic execution.
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Conclusion

The work presented in this thesis relies on two axes.
We started by exploring the practical limits of the verification of realistic programs

through three use cases: the Noise?, zero-cost functors, and Dafny-in-Dafny projects.
The Noise? project allowed us, in the context of verifying cryptographic code, to move
higher-up the stack of verified software by producing the first comprehensive verification
result for a protocol compiler that targets C code, while providing a secure high-level
API handling state machine transitions, peer and session management, state serialization
and deserialization. With the zero-cost functors project we explored the problem of
implementing low-level, efficient generic code, by establishing techniques which proved
critical in scaling the popular HACL? cryptographic library past 100,000 lines of verified
source code. Finally, the Dafny-in-Dafny project allowed us to tackle the verification of
a different class of programs, namely compilers, while studying the problem of proof
stability.

Building on the practical experience that we acquired through these projects, and in
particular the knowledge of the limitations of the existing toolchains, we then decided to
create a new verification tool, the Aeneas framework. This tool targets Rust programs
and crucially leverages the Rust type system to implement a lightweight functional
translation targeting various theorem provers, that we leverage to implement custom,
extensible automation.

The initial idea of this work was, perhaps naively, to implement some sort of a
transpiler from Rust code to pure models, in the spirit of what Electrolysis and (in
some sense) hacspec had already done, but for a larger class of programs. The idea of
using backward functions to handle the complex case of functions returning mutable
borrows came naturally, and manual case studies seemed to indicate that it applied to a
large class of programs; surely such a translation could be done, and once implemented
it would allow us to focus on the task of verifying interesting software, while abstracting
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away a large class of boring, low-level details which had been crippling our verification
efforts so far. We had already set our sights on targets such as WireGuard and OpenMLS,
which would allow us to move beyond Noise? and were then clearly out of reach with
our existing toolchains. The task of making this translation systematic proved, however,
a lot more difficult than expected; to our greatest surprise, it required us to take the
extremely long detour of working on the semantics of borrow-checking. This detour
had the benefit of producing several incidental, but welcome, side products: in addition
to the translation, we designed the Low-Level Borrow-Calculus, a semantics for safe
Rust which focuses on Rust’s linear type system and mechanism of borrows, as well
as a symbolic execution for LLBC, which in effect implements a borrow-checker. For
the purpose of proving that Aeneas’ translation is sound and extending it to better
support disjunctions in the control-flow as well as loops, we set out to formalize it. The
consequence is that, while we actually did not have enough time to finish the proof
of the translation itself, we ended up with yet another side product: a proof that the
symbolic execution implemented by Aeneas gives us memory safety, i.e., Aeneas
provably implements a borrow-checker.

If there remains a lot of work to do on the toolchain, Aeneas is already a usable
tool which supports an interesting subset of Rust and provides a relatively smooth
proof experience. Outside the topic of improving Aeneas as a verification toolchain,
the work we present in this manuscript also opened research possibilities which are
independent of program verification. We now review the future work that lays ahead.

A first obvious task is to extend the subset supported by the symbolic execution and
the translation, to include in particular nested borrows and ADTs containing borrows;
those are crucial to support some common patterns like iterators. Properly handling
these requires a more general treatment of symbolic values and region abstractions, in
particular to model symbolic values which may contain an arbitrary number of borrows
(because of, e.g., recursive data-structures). We actually introduced the ingredients to
do so in the first Aeneas paper [399] with a notion of loan projector, by which we
modeled the loans associated to the borrows which are inside a symbolic value; whenever
revealing a borrow through a symbolic expansion (e.g., when refining a symbolic pair
into a pair of symbolic values) we would insert the corresponding loan in the proper
region abstraction. Put aside minor details, the more recent version of the semantics
that we presented in the subsequent 2024 paper [400], improved all aspects of LLBC
and LLBC# but our handling of loans inside of region abstractions, that we simplified
for the purpose of doing the proofs. In particular, we removed this notion of loan
projectors, that we will have to reintroduce into the semantics. The implementation
of the symbolic execution actually already contains experimental support for nested



279

borrows and ADTs containing borrows, while extending the translation is ongoing work
but, as far as it stands, looks mostly straightforward. The main challenges lies in
updating the soundness proofs to properly account for these more general symbolic
values.

Going beyond nested borrows and ADTs containing borrows, we are keen on exploring
how we could expand the symbolic execution performed by Aeneas to support all of
Rust’s idiosyncrasies; i.e., to turn Aeneas into a realistic borrow-checker. Put aside
welcome extensions to the translation, we conjecture that doing so would also shed lights
on the essence of borrow-checking, and we have been exploring potential relaxations of
the rules to support interesting programs that are currently rejected by both the current
Rust borrow-checker and Polonius. This line of work would also ask the question of
whether it would be pertinent to use borrow-checkers based on a symbolic execution on
real languages in practice. As of today and on the subset we support, we observe that
a symbolic execution in the style of LLBC# is a quite natural way of borrow-checking
programs which do not contain loops. In the presence of loops, the answer is however
more subtle: as our approach relies on heuristics, it is currently unclear what class of
Rust programs it can ultimately validate, and more research and experimentation are
needed on the topic.

We currently have a pen and paper proof that our symbolic execution soundly
implements a borrow-checker; we can improve upon this results in two important ways.
First, it would be valuable to mechanize this proof to make sure that we didn’t miss
any detail. This would be especially useful whenever we update the semantics later
on, to make sure we do not forget to update parts of the proofs. The mechanization
is currently ongoing. Second, there still remains the problem of proving that the
translation is correct. In this regard, the high-level idea is currently to extend the
LLBC# environments with information (i.e., predicates) about the symbolic values, in
the same spirit as what is traditionally done with standard symbolic executions [70].
For instance, the rule Le-ToSymbolic states that it is possible to abstract away a
value v by transforming it into a symbolic value �; we would update this rule so that
the environment contains a predicate holding about � (e.g., it is actually equal to v).
Those predicates could be quite general; by constraining their shape, we would turn the
symbolic execution into a synthesis mechanism.

The decision of implementing a translation to functional code, rather than relying
on an encoding like the one permitted by prophecy variables [243, 244], is tightly linked
to the choice of targeting backends such as interactive theorem provers; we wanted the
translation to be natural, smooth to work with, and easy to link to the original Rust
code. If we spent a substantial amount of time experimenting with potential target
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provers, most of our work has been spent on designing and implementing the translation
itself. As a consequence we did not have much time to develop the proof experience we
target and that we described in the introduction. This proof experience would rely on
using interactive theorem provers with good meta-programming facilities to implement
enough automation to make the mundane proof obligations sufficiently smooth to work
with, while providing escape hatches when the automation falls short, and allowing to
extend the prover with custom automation whenever needs be. If the Lean backend,
which has become our reference, already has promising foundations for a good proof
experience, we are currently very far from this vision, whose feasibility remains a
conjecture. Future work is also needed to demonstrate the applicability of Aeneas on
realistic use cases. In this regard, we however note that previous work has successfully
applied interactive theorem provers based on tactics to the verification of realistic,
low-level software such as micro-kernels [188, 312] or cryptographic primitives [192].
Rust poses several challenges of its own, for instance through its heavy use of traits
which make most programs higher-order. But in the context of those past verification
efforts and under the condition that the translation works on the examples we wish to
verify, we posit that the successful application of our methodology to realistic software
should not come as a surprise. A more important open question is rather how far we
can lower the burden of writing and maintaining proofs by working on the backend
automation.

Another difficulty stems from the problem of embedding pure programs into the
logics of interactive theorem provers, which are not as permissive as we would need.
We mentioned the problem of encoding recursive and partial functions in Rust, that we
solved in a lightweight manner by using a custom fixed-point operator together with a
custom elaboration. Similar issues stem from Rust’s traits, which we currently encode
as structures (which stand for typeclasses). The fact that traits can make arbitrary
references to other traits, and in particular be mutually recursive in a very liberal
manner, poses interesting challenges.

Finally, the key point of Aeneas’ translation is that it allows abstracting away
memory on a large class of Rust programs. However, real-world Rust programs also
commonly use features that Aeneas currently doesn’t support well, such as I/O
operations, interior mutability, concurrency, and unsafe code. We mentioned that
we support I/O operations and some class of interior mutability through the use of
a state-error monad. Future work will require designing a verification framework to
comfortably reason about those. A strong possibility we envision is to connect our
pure translation to a separation logic framework; this would allow reasoning about
concurrency as well. Proofs would then involve a mixture of reasonings about pure
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fn choose<'a, T>(
b: bool,
x: &'a mut T, y: &'a mut T)
-> &'a mut T {
if b { x } else { y }

}

8 b x y xv yv,

{x 7! xv ⇤ y 7! yv}
choose(b, x, y)

{�z, let (zv, back) = choose b xv yv in

z 7! zv ⇤
(8z0v, z 7! z0v �*
(let (x0v, y

0
v) = back z0v in x 7! x0v ⇤ y 7! y0v))}

Figure 16.1: The choose Function and its Specification using Separation Logic

code and reasonings with separation logic. For instance, we could use separation logic
to model calls to some mutex lock and unlock functions, while leveraging the (easier
to work with) pure translation to model what happens between the two. Interestingly,
our backward functions have a natural interpretation in terms of separation logic; for
instance, we show in Figure 16.1 a Hoare triple that is (intuitively) satisfied by the
choose function. Going further, we could connect high-level and low-level separation
logics as has been done in prior work [459, 460] to, for instance, use a low-level logic in
the spirit of RustBelt [393] to reason about unsafe code, a high-level logic to reason
about I/O, coarse-grained concurrency and interior mutability, and ‘pure’ reasonings
for the rest.
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Appendix A

Authentication and Confidentiality
Levels for 59 Noise Protocols

Prot. Message Sequence Payload Security Properties

Name  !
A C A C

N
(premessages)

! e, es [d0] - - A0 C2

! [d1, d2, ...] - - A0 C2

K
(premessages)

! e, es, ss [d0] - - A1 C2

! [d1, d2, ...] - - A1 C2

X
(premessages)

! e, es, s, ss [d0] - - A1 C2

! [d1, d2, ...] - - A1 C2

NN
! e [d0] A0 C0 A0 C0

 e, ee [d1] A0 C1 A0 C0

$ [d2, d3, ...] A0 C1 A0 C1

KN

(premessages)

! e [d0] A0 C0 A0 C0

 e, ee, se [d1] A0 C3 A0 C0

! [d2] A0 C3 A2 C1

$ [d3, d4, ...] A0 C5 A2 C1

NK

(premessages)

! e, es [d0] A0 C0 A0 C2

 e, ee [d1] A2 C1 A0 C2

$ [d2, d3, ...] A2 C1 A0 C5

KK

(premessages)

! e, es, ss [d0] A0 C0 A1 C2

 e, ee, se [d1] A2 C4 A1 C2

! [d2] A2 C4 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

NX
! e [d0] A0 C0 A0 C0

 e, ee, s, es [d1] A2 C1 A0 C0

$ [d2, d3, ...] A2 C1 A0 C5

KX

(premessages)

! e [d0] A0 C0 A0 C0

 e, ee, se, s, es [d1] A2 C3 A0 C0

! [d2] A2 C3 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

XN

! e [d0] A0 C0 A0 C0

 e, ee [d1] A0 C1 A0 C0

! s, se [d2] A0 C1 A2 C1

$ [d3, d4, ...] A0 C5 A2 C1

IN

! e, s [d0] A0 C0 A0 C0

 e, ee, se [d1] A0 C3 A0 C0

! [d2] A0 C3 A2 C1

$ [d3, d4, ...] A0 C5 A2 C1

Prot. Message Sequence  !
Name A C A C

XK

(premessages)

! e, es [d0] A0 C0 A0 C2

 e, ee [d1] A2 C1 A0 C2

! s, se [d2] A2 C1 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

IK

(premessages)

! e, es, s, ss [d0] A0 C0 A1 C2

 e, ee, se [d1] A2 C4 A1 C2

! [d2] A2 C4 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

XX

! e [d0] A0 C0 A0 C0

 e, ee, s, es [d1] A2 C1 A0 C0

! s, se [d2] A2 C1 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

IX

! e, s [d0] A0 C0 A0 C0

 e, ee, se, s, es [d1] A2 C3 A0 C0

! [d2] A2 C3 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

Npsk0
(premessages)

! psk, e, es [d0] - - A1 C2

! [d1, d2, ...] - - A1 C2

Kpsk0
(premessages)

! psk, e, es, ss [d0] - - A1 C2

! [d1, d2, ...] - - A1 C2

Xpsk1
(premessages)

! e, es, s, ss, psk [d0] - - A1 C2

! [d1, d2, ...] - - A1 C2

NNpsk0
! psk, e [d0] A0 C0 A1 C0

 e, ee [d1] A1 C1 A1 C0

$ [d2, d3, ...] A1 C1 A1 C1

NNpsk2
! e [d0] A0 C0 A0 C0

 e, ee, psk [d1] A1 C1 A0 C0

$ [d2, d3, ...] A1 C1 A1 C1

NKpsk0

(premessages)

! psk, e, es [d0] A0 C0 A1 C2

 e, ee [d1] A2 C1 A1 C2

$ [d2, d3, ...] A2 C1 A1 C5

NKpsk2

(premessages)

! e, es [d0] A0 C0 A0 C2

 e, ee, psk [d1] A2 C1 A0 C2

$ [d2, d3, ...] A2 C1 A1 C5

NXpsk2
! e [d0] A0 C0 A0 C0

 e, ee, s, es, psk [d1] A2 C1 A0 C0

$ [d2, d3, ...] A2 C1 A1 C5

325
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Prot. Message Sequence  !
Name A C A C

XNpsk3

! e [d0] A0 C0 A0 C0

 e, ee [d1] A0 C1 A0 C0

! s, se, psk [d2] A0 C1 A2 C1

$ [d3, d4, ...] A1 C5 A2 C1

XKpsk3

(premessages)

! e, es [d0] A0 C0 A0 C2

 e, ee [d1] A2 C1 A0 C2

! s, se, psk [d2] A2 C1 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

XXpsk3

! e [d0] A0 C0 A0 C0

 e, ee, s, es [d1] A2 C1 A0 C0

! s, se, psk [d2] A2 C1 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

KNpsk0

(premessages)

! psk, e [d0] A0 C0 A1 C0

 e, ee, se [d1] A1 C3 A1 C0

! [d2] A1 C3 A2 C1

$ [d3, d4, ...] A1 C5 A2 C1

KNpsk2

(premessages)

! e [d0] A0 C0 A0 C0

 e, ee, se, psk [d1] A1 C3 A0 C0

! [d2] A1 C3 A2 C1

$ [d3, d4, ...] A1 C5 A2 C1

KKpsk0

(premessages)

! psk, e, es, ss [d0] A0 C0 A1 C2

 e, ee, se [d1] A2 C4 A1 C2

! [d2] A2 C4 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

KKpsk2

(premessages)

! e, es, ss [d0] A0 C0 A1 C2

 e, ee, se, psk [d1] A2 C4 A1 C2

! [d2] A2 C4 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

KXpsk2

(premessages)

! e [d0] A0 C0 A0 C0

 e, ee, se, s, es, psk [d1] A2 C3 A0 C0

! [d2] A2 C3 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

INpsk1

! e, s, psk [d0] A0 C0 A1 C0

 e, ee, se [d1] A1 C3 A1 C0

! [d2] A1 C3 A2 C1

$ [d3, d4, ...] A1 C5 A2 C1

INpsk2

! e, s [d0] A0 C0 A0 C0

 e, ee, se, psk [d1] A1 C3 A0 C0

! [d2] A1 C3 A2 C1

$ [d3, d4, ...] A1 C5 A2 C1

IKpsk1

(premessages)

! e, es, s, ss, psk [d0] A0 C0 A1 C2

 e, ee, se [d1] A2 C4 A1 C2

! [d2] A2 C4 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

IKpsk2

(premessages)

! e, es, s, ss [d0] A0 C0 A1 C2

 e, ee, se, psk [d1] A2 C4 A1 C2

! [d2] A2 C4 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

IXpsk2

! e, s [d0] A0 C0 A0 C0

 e, ee, se, s, es, psk [d1] A2 C3 A0 C0

! [d2] A2 C3 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

NK1

(premessages)

! e [d0] A0 C0 A0 C0

 e, ee, es [d1] A2 C1 A0 C0

$ [d2, d3, ...] A2 C1 A0 C5

NX1

! e [d0] A0 C0 A0 C0

 e, ee, s [d1] A0 C1 A0 C0

! es [d2] A0 C1 A0 C3

 [d3] A2 C1 A0 C3

$ [d4, d5, ...] A2 C1 A0 C5

Prot. Message Sequence  !
Name A C A C

X1N

! e [d0] A0 C0 A0 C0

 e, ee [d1] A0 C1 A0 C0

! s [d2] A0 C1 A0 C1

 se [d3] A0 C3 A0 C1

! [d4] A0 C3 A2 C1

$ [d5, d6, ...] A0 C5 A2 C1

X1K

(premessages)

! e, es [d0] A0 C0 A0 C2

 e, ee [d1] A2 C1 A0 C2

! s [d2] A2 C1 A0 C5

 se [d3] A2 C3 A0 C5

! [d4] A2 C3 A2 C5

$ [d5, d6, ...] A2 C5 A2 C5

XK1

(premessages)

! e [d0] A0 C0 A0 C0

 e, ee, es [d1] A2 C1 A0 C0

! s, se [d2] A2 C1 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

X1K1

(premessages)

! e [d0] A0 C0 A0 C0

 e, ee, es [d1] A2 C1 A0 C0

! s [d2] A2 C1 A0 C5

 se [d3] A2 C3 A0 C5

! [d4] A2 C3 A2 C5

$ [d5, d6, ...] A2 C5 A2 C5

X1X

! e [d0] A0 C0 A0 C0

 e, ee, s, es [d1] A2 C1 A0 C0

! s [d2] A2 C1 A0 C5

 se [d3] A2 C3 A0 C5

! [d4] A2 C3 A2 C5

$ [d5, d6, ...] A2 C5 A2 C5

XX1

! e [d0] A0 C0 A0 C0

 e, ee, s [d1] A0 C1 A0 C0

! es, s, se [d2] A0 C1 A2 C3

 [d3] A2 C5 A2 C3

$ [d4, d5, ...] A2 C5 A2 C5

X1X1

! e [d0] A0 C0 A0 C0

 e, ee, s [d1] A0 C1 A0 C0

! es, s [d2] A0 C1 A0 C3

 se [d3] A2 C3 A0 C3

! [d4] A2 C3 A2 C5

$ [d5, d6, ...] A2 C5 A2 C5

K1N

(premessages)

! e [d0] A0 C0 A0 C0

 e, ee [d1] A0 C1 A0 C0

! se [d2] A0 C1 A2 C1

$ [d3, d4, ...] A0 C5 A2 C1

K1K

(premessages)

! e, es [d0] A0 C0 A0 C2

 e, ee [d1] A2 C1 A0 C2

! se [d2] A2 C1 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

KK1

(premessages)

! e [d0] A0 C0 A0 C0

 e, ee, se, es [d1] A2 C3 A0 C0

! [d2] A2 C3 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

K1K1

(premessages)

! e [d0] A0 C0 A0 C0

 e, ee, es [d1] A2 C1 A0 C0

! se [d2] A2 C1 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

K1X

(premessages)

! e [d0] A0 C0 A0 C0

 e, ee, s, es [d1] A2 C1 A0 C0

! se [d2] A2 C1 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5
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Prot. Message Sequence  !
Name A C A C

KX1

(premessages)

! e [d0] A0 C0 A0 C0

 e, ee, se, s [d1] A0 C3 A0 C0

! es [d2] A0 C3 A2 C3

 [d3] A2 C5 A2 C3

$ [d4, d5, ...] A2 C5 A2 C5

K1X1

(premessages)

! e [d0] A0 C0 A0 C0

 e, ee, s [d1] A0 C1 A0 C0

! se, es [d2] A0 C1 A2 C3

 [d3] A2 C5 A2 C3

$ [d4, d5, ...] A2 C5 A2 C5

I1N

! e, s [d0] A0 C0 A0 C0

 e, ee [d1] A0 C1 A0 C0

! se [d2] A0 C1 A2 C1

$ [d3, d4, ...] A0 C5 A2 C1

I1K

(premessages)

! e, es, s [d0] A0 C0 A0 C2

 e, ee [d1] A2 C1 A0 C2

! se [d2] A2 C1 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

IK1

(premessages)

! e, s [d0] A0 C0 A0 C0

 e, ee, se, es [d1] A2 C3 A0 C0

! [d2] A2 C3 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

I1K1

(premessages)

! e, s [d0] A0 C0 A0 C0

 e, ee, es [d1] A2 C1 A0 C0

! se [d2] A2 C1 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

I1X

! e, s [d0] A0 C0 A0 C0

 e, ee, s, es [d1] A2 C1 A0 C0

! se [d2] A2 C1 A2 C5

$ [d3, d4, ...] A2 C5 A2 C5

IX1

! e, s [d0] A0 C0 A0 C0

 e, ee, se, s [d1] A0 C3 A0 C0

! es [d2] A0 C3 A2 C3

 [d3] A2 C5 A2 C3

$ [d4, d5, ...] A2 C5 A2 C5

I1X1

! e, s [d0] A0 C0 A0 C0

 e, ee, s [d1] A0 C1 A0 C0

! se, es [d2] A0 C1 A2 C3

 [d3] A2 C5 A2 C3

$ [d4, d5, ...] A2 C5 A2 C5





Appendix B

Authentication and Confidentiality Target Security Labels
for 59 Noise Protocols

Prot. Message Seq. Stage Initiator Handshake State Label Responder Handshake State Label Payload Security Properties

li l i lr l!r  !
Auth Conf Auth Conf

NN
! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 0 1 0 0

$ [d2, d3, ...] 3 = li[2] = li[2] = lr [2] = lr [2] 0 1 0 1

KN

! s pre

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, se [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 0 3 0 0

(CanRead [P idxi.p] t idxi.peer_eph_label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 0 3 2 1

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 0 5 2 1

NK

 s pre

! e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] t idxr .peer_eph_label) = lr [1] 0 0 0 2

 e, ee [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 2 1 0 2

$ [d2, d3, ...] 3 = li[2] = li[2] = lr [2] = lr [2] 2 1 0 5

329
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Prot. Message Seq. Stage Initiator Handshake State Label Responder Handshake State Label Payload Security Properties

li l i lr l!r  !
Auth Conf Auth Conf

KK

! s pre

 s pre

! e, es, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) u - (CanRead [P idxr .p] t idxr .peer_eph_label) u = lr [1] 0 0 1 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
 e, ee, se [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 4 1 2

(CanRead [P idxi.p] t idxi.peer_eph_label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 2 4 2 5

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 2 5 2 5

NX

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
$ [d2, d3, ...] 3 = li[2] = li[2] = lr [2] = lr [2] 2 1 0 5

KX

! s pre

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, se, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 3 0 0

(CanRead [P idxi.p] t idxi.peer_eph_label) u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u
(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)

! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 2 3 2 5

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 2 5 2 5

XN

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 0 1 0 0

! s, se [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 0 1 2 1

$ [d3, d4, ...] 4 = li[3] = li[3] = lr [3] = lr [3] 0 5 2 1

IN

! e, s [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, se [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 0 3 0 0

(CanRead [P idxi.p] t idxi.peer_eph_label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 0 3 2 1

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 0 5 2 1

XK

 s pre

! e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] t idxr .peer_eph_label) = lr [1] 0 0 0 2

 e, ee [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 2 1 0 2

! s, se [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 2 1 2 5

$ [d3, d4, ...] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5

IK

 s pre

! e, es, s, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) u - (CanRead [P idxr .p] t idxr .peer_eph_label) u = lr [1] 0 0 1 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
 e, ee, se [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 4 1 2

(CanRead [P idxi.p] t idxi.peer_eph_label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 2 4 2 5

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 2 5 2 5

XX

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
! s, se [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 2 1 2 5

$ [d3, d4, ...] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5
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Prot. Message Seq. Stage Initiator Handshake State Label Responder Handshake State Label Payload Security Properties

li l i lr l!r  !
Auth Conf Auth Conf

IX

! e, s [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, se, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 3 0 0

(CanRead [P idxi.p] t idxi.peer_eph_label) u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u
(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)

! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 2 3 2 5

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 2 5 2 5

N
 s pre

! e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] t idxr .peer_eph_label) = lr [1] - - 0 2

! [d1, d2, ...] 2 = li[1] = li[1] = lr [1] = lr [1] - - 0 2

K

! s pre

 s pre

! e, es, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) u - (CanRead [P idxr .p] t idxr .peer_eph_label) u = lr [1] - - 1 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
! [d1, d2, ...] 2 = li[1] = li[1] = lr [1] = lr [1] - - 1 2

X

 s pre

! e, es, s, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) u - (CanRead [P idxr .p] t idxr .peer_eph_label) u = lr [1] - - 1 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
! [d1, d2, ...] 2 = li[1] = li[1] = lr [1] = lr [1] - - 1 2

NNpsk0
! psk, e [d0] 1 (CanRead [P idxi.p; P idxi.peer]) - (CanRead [P idxr .p; P idxr .peer]) = lr [1] 0 0 1 0

 e, ee [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 1 1 1 0

$ [d2, d3, ...] 3 = li[2] = li[2] = lr [2] = lr [2] 1 1 1 1

NNpsk2

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, psk [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 1 1 0 0

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
$ [d2, d3, ...] 3 = li[2] = li[2] = lr [2] = lr [2] 1 1 1 1

NKpsk0

 s pre

! psk, e, es [d0] 1 (CanRead [P idxi.p; P idxi.peer]) u - (CanRead [P idxr .p; P idxr .peer]) u = lr [1] 0 0 1 2

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
 e, ee [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 2 1 1 2

$ [d2, d3, ...] 3 = li[2] = li[2] = lr [2] = lr [2] 2 1 1 5

NKpsk2

 s pre

! e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] t idxr .peer_eph_label) = lr [1] 0 0 0 2

 e, ee, psk [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 1 0 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
$ [d2, d3, ...] 3 = li[2] = li[2] = lr [2] = lr [2] 2 1 1 5

NXpsk2

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, s, es, psk [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) u (CanRead [P idxr .p] t idxr .peer_eph_label) u
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

$ [d2, d3, ...] 3 = li[2] = li[2] = lr [2] = lr [2] 2 1 1 5

XNpsk3

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 0 1 0 0

! s, se, psk [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) u = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u = lr [3] 0 1 2 1

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
$ [d3, d4, ...] 4 = li[3] = li[3] = lr [3] = lr [3] 1 5 2 1
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Prot. Message Seq. Stage Initiator Handshake State Label Responder Handshake State Label Payload Security Properties

li l i lr l!r  !
Auth Conf Auth Conf

XKpsk3

 s pre

! e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] t idxr .peer_eph_label) = lr [1] 0 0 0 2

 e, ee [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 2 1 0 2

! s, se, psk [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) u = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u = lr [3] 2 1 2 5

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
$ [d3, d4, ...] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5

XXpsk3

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
! s, se, psk [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) u = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u = lr [3] 2 1 2 5

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
$ [d3, d4, ...] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5

KNpsk0

! s pre

! psk, e [d0] 1 (CanRead [P idxi.p; P idxi.peer]) - (CanRead [P idxr .p; P idxr .peer]) = lr [1] 0 0 1 0

 e, ee, se [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 1 3 1 0

(CanRead [P idxi.p] t idxi.peer_eph_label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 1 3 2 1

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 1 5 2 1

KNpsk2

! s pre

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, se, psk [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 1 3 0 0

(CanRead [P idxi.p] t idxi.peer_eph_label) u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 1 3 2 1

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 1 5 2 1

KKpsk0

! s pre

 s pre

! psk, e, es, ss [d0] 1 (CanRead [P idxi.p; P idxi.peer]) u - (CanRead [P idxr .p; P idxr .peer]) u = lr [1] 0 0 1 2

(CanRead [S idxi.p idxi.sid; P idxi.peer]) u (CanRead [P idxr .p] t idxr .peer_eph_label) u
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

 e, ee, se [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 4 1 2

(CanRead [P idxi.p] t idxi.peer_eph_label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 2 4 2 5

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 2 5 2 5

KKpsk2

! s pre

 s pre

! e, es, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) u - (CanRead [P idxr .p] t idxr .peer_eph_label) u = lr [1] 0 0 1 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
 e, ee, se, psk [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 4 1 2

(CanRead [P idxi.p] t idxi.peer_eph_label) u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 2 4 2 5

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 2 5 2 5
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li l i lr l!r  !
Auth Conf Auth Conf

KXpsk2

! s pre

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, se, s, es, psk [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 3 0 0

(CanRead [P idxi.p] t idxi.peer_eph_label) u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u
(CanRead [S idxi.p idxi.sid; P idxi.peer]) u (CanRead [P idxr .p] t idxr .peer_eph_label) u

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 2 3 2 5

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 2 5 2 5

INpsk1

! e, s, psk [d0] 1 (CanRead [P idxi.p; P idxi.peer]) - (CanRead [P idxr .p; P idxr .peer]) = lr [1] 0 0 1 0

 e, ee, se [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 1 3 1 0

(CanRead [P idxi.p] t idxi.peer_eph_label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 1 3 2 1

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 1 5 2 1

INpsk2

! e, s [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, se, psk [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 1 3 0 0

(CanRead [P idxi.p] t idxi.peer_eph_label) u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 1 3 2 1

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 1 5 2 1

IKpsk1

 s pre

! e, es, s, ss, psk [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) u - (CanRead [P idxr .p] t idxr .peer_eph_label) u = lr [1] 0 0 1 2

(CanRead [P idxi.p; P idxi.peer]) u (CanRead [P idxr .p; P idxr .peer]) u
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

 e, ee, se [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 4 1 2

(CanRead [P idxi.p] t idxi.peer_eph_label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 2 4 2 5

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 2 5 2 5

IKpsk2

 s pre

! e, es, s, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) u - (CanRead [P idxr .p] t idxr .peer_eph_label) u = lr [1] 0 0 1 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
 e, ee, se, psk [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 4 1 2

(CanRead [P idxi.p] t idxi.peer_eph_label) u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 2 4 2 5

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 2 5 2 5

IXpsk2

! e, s [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, se, s, es, psk [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 3 0 0

(CanRead [P idxi.p] t idxi.peer_eph_label) u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u
(CanRead [S idxi.p idxi.sid; P idxi.peer]) u (CanRead [P idxr .p] t idxr .peer_eph_label) u

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 2 3 2 5

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 2 5 2 5

Npsk0

 s pre

! psk, e, es [d0] 1 (CanRead [P idxi.p; P idxi.peer]) u - (CanRead [P idxr .p; P idxr .peer]) u = lr [1] - - 1 2

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
! [d1, d2, ...] 2 = li[1] = li[1] = lr [1] = lr [1] - - 1 2
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li l i lr l!r  !
Auth Conf Auth Conf

Kpsk0

! s pre

 s pre

! psk, e, es, ss [d0] 1 (CanRead [P idxi.p; P idxi.peer]) u - (CanRead [P idxr .p; P idxr .peer]) u = lr [1] - - 1 2

(CanRead [S idxi.p idxi.sid; P idxi.peer]) u (CanRead [P idxr .p] t idxr .peer_eph_label) u
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

! [d1, d2, ...] 2 = li[1] = li[1] = lr [1] = lr [1] - - 1 2

Xpsk1

 s pre

! e, es, s, ss, psk [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) u - (CanRead [P idxr .p] t idxr .peer_eph_label) u = lr [1] - - 1 2

(CanRead [P idxi.p; P idxi.peer]) u (CanRead [P idxr .p; P idxr .peer]) u
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

! [d1, d2, ...] 2 = li[1] = li[1] = lr [1] = lr [1] - - 1 2

NK1

 s pre

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
$ [d2, d3, ...] 3 = li[2] = li[2] = lr [2] = lr [2] 2 1 0 5

NX1

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, s [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 0 1 0 0

! es [d2] 3 li[2] u (CanRead [S idxi.p idxi.sid; P idxi.peer]) = li[2] lr [2] u (CanRead [P idxr .p] t idxr .peer_eph_label) = lr [3] 0 1 0 3

 [d3] 4 = li[3] = li[3] = lr [3] = lr [3] 2 1 0 3

$ [d4, d5, ...] 5 = li[3] = li[3] = lr [3] = lr [3] 2 1 0 5

X1N

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 0 1 0 0

! s [d2] 3 = li[2] = li[2] = lr [2] = lr [3] 0 1 0 1

 se [d3] 4 li[3] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[4] lr [3] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 0 3 0 1

! [d4] 5 = li[4] = li[4] = lr [4] = lr [4] 0 3 2 1

$ [d5, d6, ...] 6 = li[4] = li[4] = lr [4] = lr [4] 0 5 2 1

X1K

 s pre

! e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] t idxr .peer_eph_label) = lr [1] 0 0 0 2

 e, ee [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 2 1 0 2

! s [d2] 3 = li[2] = li[2] = lr [2] = lr [3] 2 1 0 5

 se [d3] 4 li[3] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[4] lr [3] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 2 3 0 5

! [d4] 5 = li[4] = li[4] = lr [4] = lr [4] 2 3 2 5

$ [d5, d6, ...] 6 = li[4] = li[4] = lr [4] = lr [4] 2 5 2 5

XK1

 s pre

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
! s, se [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 2 1 2 5

$ [d3, d4, ...] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5
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li l i lr l!r  !
Auth Conf Auth Conf

X1K1

 s pre

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
! s [d2] 3 = li[2] = li[2] = lr [2] = lr [3] 2 1 0 5

 se [d3] 4 li[3] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[4] lr [3] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 2 3 0 5

! [d4] 5 = li[4] = li[4] = lr [4] = lr [4] 2 3 2 5

$ [d5, d6, ...] 6 = li[4] = li[4] = lr [4] = lr [4] 2 5 2 5

X1X

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
! s [d2] 3 = li[2] = li[2] = lr [2] = lr [3] 2 1 0 5

 se [d3] 4 li[3] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[4] lr [3] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 2 3 0 5

! [d4] 5 = li[4] = li[4] = lr [4] = lr [4] 2 3 2 5

$ [d5, d6, ...] 6 = li[4] = li[4] = lr [4] = lr [4] 2 5 2 5

XX1

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, s [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 0 1 0 0

! es, s, se [d2] 3 li[2] u (CanRead [S idxi.p idxi.sid; P idxi.peer]) u = li[2] lr [2] u (CanRead [P idxr .p] t idxr .peer_eph_label) u = lr [3] 0 1 2 3

(CanRead [P idxi.p] t idxi.peer_eph_label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
 [d3] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 3

$ [d4, d5, ...] 5 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5

X1X1

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, s [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 0 1 0 0

! es, s [d2] 3 li[2] u (CanRead [S idxi.p idxi.sid; P idxi.peer]) = li[2] lr [2] u (CanRead [P idxr .p] t idxr .peer_eph_label) = lr [3] 0 1 0 3

 se [d3] 4 li[3] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[4] lr [3] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 2 3 0 3

! [d4] 5 = li[4] = li[4] = lr [4] = lr [4] 2 3 2 5

$ [d5, d6, ...] 6 = li[4] = li[4] = lr [4] = lr [4] 2 5 2 5

K1N

! s pre

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 0 1 0 0

! se [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 0 1 2 1

$ [d3, d4, ...] 4 = li[3] = li[3] = lr [3] = lr [3] 0 5 2 1

K1K

! s pre

 s pre

! e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] t idxr .peer_eph_label) = lr [1] 0 0 0 2

 e, ee [d1] 2 li[1] u (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] lr [1] u (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 2 1 0 2

! se [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 2 1 2 5

$ [d3, d4, ...] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5

KK1

! s pre

 s pre

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, se, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 3 0 0

(CanRead [P idxi.p] t idxi.peer_eph_label) u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u
(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)

! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 2 3 2 5

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 2 5 2 5
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li l i lr l!r  !
Auth Conf Auth Conf

K1K1

! s pre

 s pre

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
! se [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 2 1 2 5

$ [d3, d4, ...] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5

K1X

! s pre

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
! se [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 2 1 2 5

$ [d3, d4, ...] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5

KX1

! s pre

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, se, s [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 0 3 0 0

(CanRead [P idxi.p] t idxi.peer_eph_label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
! es [d2] 3 li[2] u (CanRead [S idxi.p idxi.sid; P idxi.peer]) = li[2] lr [2] u (CanRead [P idxr .p] t idxr .peer_eph_label) = lr [3] 0 3 2 3

 [d3] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 3

$ [d4, d5, ...] 5 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5

K1X1

! s pre

! e [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, s [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 0 1 0 0

! se, es [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) u = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u = lr [3] 0 1 2 3

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
 [d3] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 3

$ [d4, d5, ...] 5 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5

IK1

 s pre

! e, s [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, se, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 3 0 0

(CanRead [P idxi.p] t idxi.peer_eph_label) u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u
(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)

! [d2] 3 = li[2] = li[2] = lr [2] = lr [2] 2 3 2 5

$ [d3, d4, ...] 4 = li[2] = li[2] = lr [2] = lr [2] 2 5 2 5

I1K1

 s pre

! e, s [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
! se [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 2 1 2 5

$ [d3, d4, ...] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5

I1X

! e, s [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
! se [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr [3] 2 1 2 5

$ [d3, d4, ...] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5
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li l i lr l!r  !
Auth Conf Auth Conf

IX1

! e, s [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, se, s [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) u = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) u = lr [1] 0 3 0 0

(CanRead [P idxi.p] t idxi.peer_eph_label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
! es [d2] 3 li[2] u (CanRead [S idxi.p idxi.sid; P idxi.peer]) = li[2] lr [2] u (CanRead [P idxr .p] t idxr .peer_eph_label) = lr [3] 0 3 2 3

 [d3] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 3

$ [d4, d5, ...] 5 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5

I1X1

! e, s [d0] 1 public - public = lr [1] 0 0 0 0

 e, ee, s [d1] 2 (CanRead [S idxi.p idxi.sid] t idxi.peer_eph_label) = li[2] (CanRead [S idxr .p idxr .sid] t idxr .peer_eph_label) = lr [1] 0 1 0 0

! se, es [d2] 3 li[2] u (CanRead [P idxi.p] t idxi.peer_eph_label) u = li[2] lr [2] u (CanRead [S idxr .p idxr .sid; P idxr .peer]) u = lr [3] 0 1 2 3

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] t idxr .peer_eph_label)
 [d3] 4 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 3

$ [d4, d5, ...] 5 = li[3] = li[3] = lr [3] = lr [3] 2 5 2 5





Appendix C

Forward Simulation Between HLPL
and LLBC

Figure 9.5, Figure 9.6, Figure 9.7, Figure 9.10, Figure 9.3 and Figure 9.4 give the
operational semantics of LLBC. This semantics is the big-step semantics without
step-indexing; we omit the version with step-indexing, which just consists in adding
a step index to all the rules (the index is the same in the conclusion and in the
premises, see E-Step-Seq-Unit) at the exception of the rules to evaluate loops and
function calls (see E-Step-Call), and finally adding the rule E-Step-Zero. Figure 9.9
introduces the additional rules to evaluate loop statements. Figures Figure 11.3 and
Figure 11.5 describe the operational semantics for HLPL and HLPL+. We omit some
rules for HLPL because it shares most of its semantics with LLBC. The semantics
of HLPL+ is actually not exactly a superset of the semantics of HLPL, because we
need to replace HLPL-E-Assign with HLPL+-E-Assign, E-Ptr with HLPL+-E-Ptr

and HLPL-E-Move with HLPL+-E-Move. For HLPL+-E-Assign, we indeed need
to prevent overriding vp if it contains locations as well as outer loans. Without this
additional restriction, we can not prove the forward simulation for states related
by Le-MutBorrow-To-Ptr or Le-SharedLoan-To-Loc, because they allow turning
outer loans into locations (we might get into a situation where we are allowed to overwrite
a value in the right state but not the left state). We note that because loan values can
only exist in HLPL+ states, HLPL-E-Assign and HLPL+-E-Assign coincide on HLPL
states. As a consequence we still get the crucial property we need for the proof of the
forward simulation, that is that HLPL is a stable subset of HLPL+. Similar reasonings
apply for HLPL+-E-Ptr and HLPL+-E-Move. We need the additional restrictions for
the HLPL+-E-Ptr because otherwise we may insert locations where there are already
shared loans, which causes issues when combined with Le-SharedLoan-To-Loc.

We now turn to the proof of 2. We need several auxiliary lemmas, to show that
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evaluating rvalues (i.e., expressions - Lemma 1), evaluating assignments (Lemma 7)
and finally reorganizing states (Lemma 8) preserves the relation .

Lemma 1 (Rvalue-Preserves-HLPL+-Rel). For all ⌦l and ⌦r HLPL+ states and rv

right-value we have:

⌦l  ⌦r ) 8 vr ⌦0r, ⌦r `hlpl+ rv + (vr, ⌦
0
r))

9 vl ⌦0l, ⌦l `hlpl+ rv + (vl, ⌦
0
l) ^ (vl, ⌦

0
l)  (vr, ⌦

0
r)

where we define (vl, ⌦0l)  (vr, ⌦0r) as:

(vl, ⌦
0
l)  (vr, ⌦

0
r) := (⌦0l, _! vl)  (⌦0r, _! vr)

Proof
We do the proof by induction on ⌦r `hlpl+ rv + (vr, ⌦0

r). Then, in (most of) the subcases we do the
proof by induction on ⌦l  ⌦r. The high-level idea is to show that, if ⌦l is related to ⌦r in some
specific manner (for instance, ⌦l is ⌦r where we replaced a shared borrow by a pointer by using
Le-SharedReserved-To-Ptr) then in most situations they remain related excatly the same
way (that is, they remain related by Le-SharedReserved-To-Ptr). For instance, if the left
state is the right state where we replaced a shared borrow by a pointer, then after a move operation,
the left state is still exactly the right state where we replaced a shared borrow by a pointer; of
course, we need to reason about wether the borrow was moved or not, so that we can instantiate
Le-SharedReserved-To-Ptr with the proper state with a hole to show that the resulting left
state and right state are related.

• Case copy p. We have (premises of E-Copy):

` ⌦r(p)
imm) vr ^

?, loanm , borrowm,r 62 v ^

` copy vr = v0r

By induction on ⌦l  ⌦r.

– Reflexive case. Trivial.

– Transitive case. Trivial by the induction hypotheses.

– Case Le-SharedReserved-To-Ptr.

By the premises of Le-SharedReserved-To-Ptr, there exists ⌦1[.] such that ⌦l = ⌦1[ptr `] 
⌦1[borrow

s `] = ⌦r (doing the borrow
r ` case later).

We have to reason about whether the hole of ⌦1[.] is inside the value we read at path p or not,
that is: either the hole is not at path p, in which case we read the same value in ⌦l and ⌦r, or the
hole is inside, in which case the value we read differs in exactly one place, where we have borrow

s `

for ⌦r and ptr ` for ⌦l. We formalize this in the auxiliary lemma 2 below.
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Lemma 2. Auxiliary Lemma

8 p vr,

(` ⌦r(p)
imm) vr ))

⌦l = ⌦1[ptr `] ^ ⌦1[borrow
s `] = ⌦r )

((` ⌦l(p)
imm) vr) _

(9 V [.], (` ⌦l(p)
imm) V [ptr `]) ^ (` ⌦r(p)

imm) V [borrows `])))

The proof of this lemma is straightforward by induction on p: we simply have to show that if we
can read through one path element on the right (for instance, we can reduce a projection) then
we can do the same on the left. The tricky case happens when dereferencing (i.e., ⇤). We have to
pay attention to two elements.

∗ We might dereference borrow
s ` on the right and ptr ` on the left. In this case we have to use the

fact that dereferencing ptr ` is the same as dereferencing borrow
s ` (because the read rules are de-

fined so that it is the case; see R-Deref-SharedBorrow and R-Deref-Ptr-SharedLoan).
∗ Dereferencing a value allows us to “jump” to a value elsewhere in the environment (a shared

loan, a location, or an HLPL box). We then have to make a case disjunction on whether the
hole is inside the value we jump to or not. We made the theorem statement general enough so
that we can handle this case.

Given lemma 2, we instantiate it on p and vr then do a case disjunction on its conclusion.

∗ Case 1 (we read the same value on the left and the right). We have:

` ⌦r(p)
imm) vr ^

` ⌦l(p)
imm) vr

Because (v0r, ⌦l)  (v0r, ⌦r) is defined as (⌦l, _ ! v0r)  (⌦r, _ ! v0r), we can conclude by
using Le-SharedReserved-To-Ptr, which gives us: (v0r, ⌦l)  (v0r, ⌦r).

∗ Case 2 (the hole is inside the value we read). There exists V [.] such that:

` ⌦l(p)
imm) V [ptr `] ^

` ⌦r(p)
imm) V [borrows `]

By induction on V [.] we prove that the copy differs in exactly one place as well, that is, there
exists V 0[.] such that: ` copy V [ptr `] = V 0[ptr `] and ` copy V [borrows `] = V 0[borrows `].
This time we have to apply Le-SharedReserved-To-Ptr twice, once for the original
borrow, once for the borrow inside the copied value.

⌦l, _! V 0[ptr `] = ⌦1[ptr `],_! V 0[ptr `]

 ⌦1[borrow
s `],_! V 0[ptr `]

= ⌦r,_! V 0[ptr `]

 ⌦r,_! V 0[borrows `]
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The case borrow
r ` is similar, and actually even simpler because: 1. in the proof of 2 we can’t

dereference a reserved borrow; 2. for the end of the proof we can’t copy a reserved borrow.

– Case Le-MutBorrow-To-Ptr. Same as Le-SharedReserved-To-Ptr. We prove an
auxiliary lemma which is similar to 2, and use in the proof the fact that pointers and mutable bor-
rows are dereferenced in ways compatible with Le-MutBorrow-To-Ptr (R-Deref-MutBorrow,
R-Deref-Ptr-Loc). For the end of the proof, in the case we don’t read the same value on the
left and on the right, we use the fact that we can’t copy mutable borrows or mutable loans.

– Case Le-RemoveAnon. Similar to Le-SharedReserved-To-Ptr but the auxiliary lemma
is even simpler because we read the same value on the left and on the right (the presence or
absence of an anonymous value without borrows or loans doesn’t have any impact on evaluation).

– Case Le-Merge-Locs. By the premises of the rule, there exist ⌦1[.] `0, `1 and v such that:

⌦r = ⌦1[loc `0 (loc `1 v)], 8 v0, loc `1 v0 /2 ⌦1[`0], and ⌦l =
h
`0
.
`1
i
(⌦1[loc `0 v]).

We prove that, depending on whether the hole of ⌦1[.] is inside the value we read at p or not,
then reading in ⌦l along p is well defined, and the read value is the same as in ⌦r modulo two
things: 1. we substitute `0 for `1; 2. we may have collapsed the collapsed the locations for `0 and
`1. Formally, we prove the auxiliary lemma below.

Lemma 3. Auxiliary Lemma

⌦r = ⌦1[loc `0 (loc `1 v)]) (8 v0, loc `1 v0 /2 ⌦1[`0]))

⌦l =
h
`0
.
`1
i
(⌦1[loc `0 v])) 8 p vr, ` ⌦r(p)

imm) vr )

(` ⌦l(p)
imm)

h
`0
.
`1
i
(vr) _

(9 V [.], ` ⌦l(p)
imm)

h
`0
.
`1
i
(V [loc `0 v]) ^ vr = V [loc `0 (loc `1 v)]))

We do the proof of 3 by induction on ` ⌦r(p)
imm) vr. A crucial point which makes the proof works

is that the substitution applies a pointwise transformation. The difficult case is the dereference
(⇤). If we dereference `0 to read loc `1 v on the right, we read

h
`0
.
`1
i
v on the left. We then

have to make a case disjunction on whether the path is empty (in which case we stop) or not (in
which case we dive into the shared loan by R-SharedLoan). Also note that because we do not
enforce that states are well-formed, there may be several loc `0 ... in ⌦r, meaning we don’t have to
read loc `1 v (but this doesn’t have much impact on the proof, because then a similar loc `0 ... will
appear on the left, and we have, again, to make a case disjunction on whether the hole appears
inside the pointed value or not).

Given 3, we can easily conclude the proof (we relate ⌦0
l to ⌦0

r with Le-Merge-Locs again).

– Case Le-SharedLoan-To-Loc. Same as above. We also use the fact that copying a loca-
tion (respectively, a shared loan) removes the location (respectively, the shared loan) wrapper
(Copy-Loc, Copy-SharedLoan).

– Case Le-Box-To-Loc. We note that ptr ` and Box v are dereferenced in ways compatible with
Le-Box-To-Loc.

By using 2 as model, we prove the auxiliary below, and conclude by using Le-Box-To-Loc.
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Lemma 4. Auxiliary Lemma

8 p vr, ` ⌦r(p)
imm) vr )

⌦l = (⌦1[ptr `], _`! v) ^ ⌦1[Box v] = ⌦r )

((` ⌦l(p)
imm) vr) _

(9 V [.], (` ⌦l(p)
imm) V [ptr `]) ^ (` ⌦r(p)

imm) V [Box v])))

– Case Le-Subst. The read judgement is not affected by the substitution, and we use the fact
that ` copy v commutes with identifier substitutions.

• Case move p.

– Reflexive case. Trivial.

– Transitive case. Trivial by the induction hypotheses.

– Case Le-SharedReserved-To-Ptr.

There exists ⌦1[.] such that ⌦l = ⌦1[ptr `] and ⌦1[borrow
s,r `]. By using the assumption `

⌦r(p)
mov) vr and the fact that the move capability doesn’t allow to dereference a shared borrow

(R-Deref-SharedBorrow, W-Deref-SharedBorrow) then when reading or updating
along path p we don’t have to consider the case where we might dereference borrow

s,r ` in the
right environment and ptr ` in the left environment. This allows us to prove by induction on p the
following auxiliary lemma (either the hole of ⌦2 is independent of the moved value, or it is inside).

Lemma 5. Auxiliary Lemma

8 p vr, ` ⌦r(p)
mov) vr )

⌦l = ⌦1[ptr `] ^ ⌦1[borrow
s,r `] = ⌦r )

(9 ⌦2[., .], ⌦1[.] = ⌦2[., vr] ^ (8 v, ` ⌦2[., v](p)
mov) v) ^

(8 v, ` ⌦2[., .][p v]
mov) ⌦2[., v])) _

(9 ⌦2[.] V [.], ⌦1[.] = ⌦2[V [.]] ^ (8 v, ` ⌦2[v](p)
mov) v) ^

(8 v, ` ⌦2[.][p v]
mov) ⌦2[v]))

Given this lemma, we conclude the proof by using Le-SharedReserved-To-Ptr.

– Case Le-MutBorrow-To-Ptr.

There exist `, v, ⌦1[., .] such that ⌦l = ⌦1[loc ` v] and ⌦r = ⌦1[loan
m `, borrow

m ` v]. The proof
is similar to the case Le-SharedReserved-To-Ptr but this time we have two holes.

Because it is not possible to dive into mutable borrows (e.g., R-Deref-MutBorrow) or
mutable loans when moving values, we prove that when reading or updating along path p we can’t
dereference ` and can’t go through loan

m `. Also, following the premise of E-Move, we can’t
move mutable loans. This allows us to prove the following theorem by induction on p.
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Lemma 6. Auxiliary Lemma

8 p vr,

` ⌦r(p)
mov) vr )

(9 ⌦2[ . , . , . ],

⌦1[ . , . ] = ⌦2[ . , . , vr ] ^

(8 v,` ⌦2[ . , . , v ](p)
mov) v) ^

(8 v,` ⌦2[ . , . , . ][p v]
mov) ⌦2[ . , v ])) _

(9 ⌦2[ . , . ]V [ . ],

⌦1[ . , . ] = ⌦2[ . , V [ . ] ] ^

(8 v, ` ⌦2[ . , v ](p)
mov) v) ^

(8 v, ` ⌦2[ . , . ][p v]
mov) ⌦2[ . , v ]))

We do a case disjunction on the conclusion of the auxiliary lemma.

∗ Case 1. There exist ⌦2[ . , . , . ] such that:

` ⌦r(p)
mov) vr

` ⌦r[p ?]
mov) ⌦2[ loan

m ` , borrowm ` v , ? ]

` ⌦l(p)
mov) vr

` ⌦l[p ?]
mov) ⌦2[ loc ` v , ptr ` , ? ]

Thus:

⌦r(p) ` move p + (vr, ⌦2[ loan
m ` , borrowm ` v , ? ])

⌦l(p) ` move p + (vr, ⌦2[ loc ` v , ptr ` , ? ])

Posing:

⌦0
r := ⌦2[ loan

m ` , borrowm ` v , ? ]

⌦0
l := ⌦2[ loc ` v , ptr ` , ? ]

By instantiating Le-MutBorrow-To-Ptr with the state with holes ⌦2[ . , . , ? ]) we get
(vr, ⌦0

l)  (vr, ⌦0
r).

∗ Case 2. There exist ⌦2[ . , . ], V [ . ] such that:

⌦1[ . , . ] = ⌦2[ . , V [ . ] ]

8 v, ` ⌦2[ . , v ](p)
mov) v

8 v, ` ⌦2[ . , . ][p v]
mov) ⌦2[ . , v ]
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This gives us:

` ⌦r(p)
mov) V [ borrowm ` v ]

` ⌦r[p ?]
mov) ⌦2[ loan

m ` , ? ]

` ⌦l(p)
mov) V [ ptr ` ]

` ⌦l[p ?]
mov) ⌦2[ loc 2 v , ? ]

By instantiating Le-MutBorrow-To-Ptr with the state with holes ⌦2[ . , ? ], _! V [ . ] we
get: (vr, ⌦0

l)  (vr, ⌦0
r).

– Case Le-RemoveAnon. Trivial, for the same arguments as in the copy p case.

– Case Le-Merge-Locs. There exist `1, `2, v, ⌦1[., .] such that ⌦l =
h
`1
.
`2
i
(⌦1[loc `1 v]),

⌦r = ⌦1[loc `1 (loc `2 v)].

The crucial point of the proof is that the read and write rules are such that it is not possible
to move the inner location (i.e., loc `2 v) elsewhere (R-Loc requires the immut capability, while
here we use the mov capability). If it were the case, we could not apply Le-Merge-Locs to
conclude the proof because after the move the locations might not be nested anymore (i.e., we
might have lost the fact that `1 and `2 point to the same value). This is actually the reason why
we forbid moving a value through a pointer which points to a location (while we allow moving a
value through a pointer which points to an HLPL box).

– Case Le-SharedLoan-To-Loc. Similar to the case Le-MutBorrow-To-Ptr but simpler
because we only have to consider the loan, which can’t be moved.

– Case Le-Box-To-Loc. Also similar to the cases above.

– Case Le-Subst. We easily get that the read and write judgements commute with identifier
substitutions.

• Case HLPL+-E-Ptr (& p, &reserved p, &mut p).

– Reflexive case. Trivial.

– Transitive case. Trivial by the inductive hypotheses.

– Case Le-SharedReserved-To-Ptr.

By the premises of Le-SharedReserved-To-Ptr, there exists ⌦1[.] such that ⌦l = ⌦1[ptr `] 
⌦1[borrow

s `] = ⌦r
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We prove by induction on p the auxiliary lemma.

8 p vr,

` ⌦r(p)
mov) vr )

(9 ⌦2[ . , . ] v,

⌦1[ . ] = ⌦2[ . , v ] ^

(8 v, ⌦2[ . , v ](p)
mov) v) ^

(8 v, ` ⌦2[ . , . ][p v]
mov) v)) _

(9 ⌦2[ . ]V [ . ],

⌦1[ . ] = ⌦2[ . ]V [ . ]

(8 v, ⌦2[ v ](p)
mov) v) ^

(8 v, ` ⌦2[ . ][p v]
mov) v))

We conclude by doing a case disjunction.

– Case Le-MutBorrow-To-Ptr. Similar to above.

– Case Le-RemoveAnon. Similar to above (adding an anonymous value with no borrows or
loans doesn’t have any effect on the evaluation).

– Case Le-Merge-Locs. Similar to the move case. We note that we can’t introduce a location
between two shared locations, meaning that we can apply Le-Merge-Locs to conclude.

– Case Le-SharedLoan-To-Loc. Similar. The important case is the case where we transform
the shared loan to which we create a new pointer.

– Case Le-Box-To-Loc. Similar to the Le-MutBorrow-To-Ptr case.

– Case Le-Subst. We easily prove by induction that the read and write judgements commute
with substitutions. However, we have to consider the cases where the substitution is applied to
the (potentially fresh) location that the new pointer points to. If the location is fresh, we can
use the substituted identifier to apply HLPL+-E-Ptr on the left, making the two states equal,
which allows us to conclude by reflexivity of . If it is not fresh, we conclude by Le-Subst.

• Case new . The premises of the rule give us that:

⌦r ` op + (v0r, ⌦
00
r )

vr = ptr `

⌦0
r = ⌦00

r , `! v0r

By the induction hypothesis we get:

⌦l ` op + (v0l, ⌦
00
l )

(v0l, ⌦
00
l )  (v0r, ⌦

00
r )

By HLPL-E-Box-New we get:

⌦l ` new op + (ptr `, ⌦00
l ), _! v0l
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All we have to show is that (for some `0 fresh, that we choose so that it doesn’t appear in the left
but also not in the right environment - this makes reasoning about Le-Subst easier, and we can
always use Le-Subst to map ` to `0):

(ptr `0, (⌦00
l , `

0 ! v0l))  (ptr `, (⌦00
r , `! v0r))

We prove it by induction on .

• Case constants. Trivial, because the states are unchanged, and the result of evaluating the constants
is independent of the states.

• Case adt constructor. Trivial by the induction hypotheses (we conclude in a manner similar to the
case new ).

• Case unary/binary operations (¬, +, -, etc.). Trivial by the induction hypotheses.

We now prove the following lemma about assignments.

Lemma 7 (Assign-Preserves-HLPL+-Rel). For all ⌦l and ⌦r HLPL+ states, rv right-
value and p place we have:

⌦l  ⌦r ) 8⌦0r, ⌦r `hlpl+ p := rv  ((), ⌦0r))

9⌦0l, ⌦l `hlpl+ p := rv  ((), ⌦0l) ^ ⌦0l  ⌦0r

Proof
Lemma 1 gives us that there exist vr, ⌦00

r , vl, ⌦00
l such that:

⌦r `hlpl+ rv + (vr, ⌦
00
r ) ^

⌦l `hlpl+ rv + (vl, ⌦
00
l ) ^

(vl, ⌦
00
l )  (vr, ⌦

00
r )

We do the proof by induction on (vl, ⌦00
l )  (vr, ⌦00

r ), then on the path p. The reasoning is very
similar to what we saw in the proof of lemma 1. We focus on the important parts of the proofs.

• Reflexive case. Trivial.

• Transitive case. Trivial by the induction hypotheses.

• Case Le-SharedReserved-To-Ptr. We cannot update through a shared or a reserved borrow.
We have to reason about three cases: 1. the hole is the right-value and moved to the place at p;
2. the hole is in the overwritten value, in which case we use the fact that it will be moved to an
anonymous variable; 3. the hole is neither in the right-value or the overwritten value. In all cases we
conclude by using Le-SharedReserved-To-Ptr.

• Case Le-MutBorrow-To-Ptr. Same as Le-SharedReserved-To-Ptr but we have to
consider more cases: 1. the right-value might contain the mutable borrow that gets transformed
to a pointer; 2. the overwritten value might contain the mutable borrow and/or the muta-
ble loan, but they will be moved to an anonymous value. In all cases we conclude by using
Le-MutBorrow-To-Ptr.
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• Case Le-RemoveAnon. Similar to the cases in 1: trivial by using the fact that an anonymous
value with no loans or borrows doesn’t have any influence on the evaluation.

• Case Le-Merge-Locs. We have to consider the fact that the two locations may be in the
overwritten value. If it is the case, they are both moved to an anonymous variable. In particular,
they can’t get separated because we can’t dive into a location by using the move capability (W-Loc),
meaning we can conclude by applying Le-Merge-Locs.

• Case Le-SharedLoan-To-Loc. Similar to above cases. The shared loan might be in the
overwritten value, in which case it is moved to an anonymous value.

• Case Le-Box-To-Loc. Similar to above cases. We have to consider the following cases: 1. the
box value may be in the right-value; 2. we may move the (inner) boxed value but not the outer box;
3. we may overwrite the box value; 4. we may overwrite the (inner) boxed value but not the outer
box value. In all cases, we conclude by using Le-Box-To-Loc.

• Case Le-Subst. Trivial by using the fact that the read and write judgements commute with
identifier substitutions.

We now prove that reorganizations preserve the relation between HLPL+ states.

Lemma 8 (Reorg-Preserves-HLPL+-Rel). For all ⌦l and ⌦r HLPL+ states we have:

⌦l  ⌦r ) 8 ⌦0r, ⌦r ,! ⌦0r )

9 ⌦0l, ⌦l ,! ⌦0l ^ ⌦0l  ⌦0r

Proof
By induction on ⌦r ,! ⌦0

r.

• Case Reorg-None. Trivial.

• Case Reorg-Seq. Trivial by the induction hypotheses.

• Case Reorg-End-MutBorrow. By induction on ⌦l  ⌦0
r.

– Reflexive case. Trivial.

– Transitive case. Trivial by the induction hypotheses.

– Case Le-SharedReserved-To-Ptr. We have to make a case disjunction on whether the
shared borrow we convert to a pointer is inside the mutably borrowed value or not. We apply
Reorg-End-MutBorrow to the left environment and conclude with Le-SharedReserved-To-Ptr.

– Case Le-MutBorrow-To-Ptr. By using the premises of Le-MutBorrow-To-Ptr we
get that there can’t be other mutable borrows or loans with the same identifier as the one being
transformed (note again that we don’t have a well-formedness assumption about the states). We
have to consider the following cases: 1. the ended mutable borrow may contain the borrow we
convert to a pointer; 2. the ended mutable borrow and the transformed borrow may be the same.
In all cases, we end the pointer on the left, then the location. If we are in case 2., we conclude by
using reflexivity of  (the states on the left and on the right are now the same). Otherwise, we
conclude by using Le-MutBorrow-To-Ptr.

– Case Le-RemoveAnon. Trivial.
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– Case Le-Merge-Locs. Following the premise of Le-Merge-Locs, the borrow we end is neces-
sarily independent of the inner location we get rid of. This allows us apply Reorg-End-MutBorrow
to the left state and conclude by using Le-Merge-Locs.

– Case Le-SharedLoan-To-Loc. The shared loan doesn’t have the same loan identifier as the
mutable borrow and the mutable loan we end. We apply Reorg-End-MutBorrow to the
left state and conclude by Le-SharedLoan-To-Loc.

– Case Le-Box-To-Loc. Straightforward. We have to reason about the respective places of the
box and the borrow and the loan. We apply Reorg-End-MutBorrow to the left state and
conclude by Le-Box-To-Loc.

– Case Le-Subst. We apply Reorg-End-MutBorrow to the left state, potentially on the
substituted identifier.

• Case Reorg-End-SharedReservedBorrow. By induction on ⌦l  ⌦0
r.

– Reflexive case. Trivial.

– Transitive case. Trivial by the induction hypotheses.

– Case Le-SharedReserved-To-Ptr. The borrow we end may be the one we transform to a
pointer. If it is the case, we end the corresponding pointer (Reorg-End-Ptr and we conclude
by using reflexivity of . Otherwise, we use Le-SharedReserved-To-Ptr.

– Case Le-MutBorrow-To-Ptr. By using the premise of Le-MutBorrow-To-Ptr we get
that the mutable borrow (and its loan) can’t have the same loan identifier as the shared borrow we
convert to a pointer. This allows us to conclude by using Reorg-End-SharedReservedBorrow
on the left environment then Le-MutBorrow-To-Ptr.

– Case Le-RemoveAnon. Trivial because the anonymous variables can’t contain borrows or
loans.

– Case Le-Merge-Locs. The borrow we convert to a pointer may be affected by the sub-
stitution. In all cases, we conclude with Reorg-End-SharedReservedBorrow then
Le-Merge-Locs.

– Case Le-SharedLoan-To-Loc. We note that the shared loan we end and the borrow we con-
vert are necessarily independent. We conclude by Reorg-End-SharedReservedBorrow
applied to the left environment then Le-SharedLoan-To-Loc.

– Case Le-Box-To-Loc. We apply Reorg-End-SharedReservedBorrow to the left
environment then conclude by Le-Box-To-Loc.

– Case Le-Subst. We apply Reorg-End-SharedReservedBorrow to the left state, po-
tentially on the substituted identifier.

• Case HLPL+-Reorg-End-SharedLoan. By induction on ⌦l  ⌦0
r.

– Reflexive case. Trivial.

– Transitive case. Trivial by the induction hypotheses.

– Case Le-SharedReserved-To-Ptr. By the premise of Reorg-End-SharedLoan, the
borrow we convert can’t have the same identifier as the shared loan we end. We apply Reorg-End-SharedLoan
to the left state and conclude by Le-SharedReserved-To-Ptr.
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– Case Le-MutBorrow-To-Ptr. By the premise of Le-MutBorrow-To-Ptr the borrow
(and the loan) we convert can’t have the same identifier as the shared loan we end. We apply
Reorg-End-SharedLoan to the left environment and conclude by Le-MutBorrow-To-Ptr.

– Case Le-RemoveAnon. Trivial because the anonymous variable can’t contain loans.

– Case Le-Merge-Locs. By the premise of Le-Merge-Locs, the shared loan we end on the
right can’t have the same identifier as the inner location that we remove. This means that it is
not affected by the substitution, and as a result the premises of Reorg-End-SharedLoan
are also satisfied in the left state; we apply this rule and conclude by Le-Merge-Locs.

– Case Le-SharedLoan-To-Loc. We have to make a case disjunction on whether the shared
loan we convert is also the shared loan we end. If it is the case, we apply Reorg-End-Loc to
the left state and conclude by reflexivity of , otherwise we apply Reorg-End-SharedLoan
and conclude by Le-SharedLoan-To-Loc.

– Case Le-Box-To-Loc. Straightforward. We conclude by Le-Box-To-Loc.

– Case Le-Subst. We apply Reorg-End-SharedLoan to the left state, potentially on the
substituted identifier.

• Case Reorg-End-Ptr. By induction on ⌦l  ⌦0
r.

– Reflexive case. Trivial.

– Transitive case. Trivial by the induction hypotheses.

– Case Le-SharedReserved-To-Ptr. We apply Reorg-End-Ptr in the left environ-
ment (beware that in the right state we have a borrow, so there must be another pointer,
possibly with the same identifier, that we can also find in the left state) and conclude by
Le-SharedReserved-To-Ptr.

– Case Le-MutBorrow-To-Ptr. Same as the case Le-SharedReserved-To-Ptr.

– Case Le-RemoveAnon. Trivial.

– Case Le-Merge-Locs. The pointer may be affected by the substitution, but we can also end it
in the left state and conclude by Le-Merge-Locs.

– Case Le-SharedLoan-To-Loc. We apply Reorg-End-Ptr in the left state and conclude
by Le-SharedLoan-To-Loc.

– Case Le-Box-To-Loc. We apply Reorg-End-Ptr in the left state and conclude by
Le-Box-To-Loc.

– Case Le-Subst. We apply Reorg-End-Ptr to the left state, potentially on the substituted
identifier.

• Case Reorg-End-Loc. By induction on ⌦l  ⌦0
r.

– Reflexive case. Trivial.

– Transitive case. Trivial by the induction hypotheses.

– Case Le-SharedReserved-To-Ptr. By the premises of Reorg-End-Loc, the location
we end and the borrow we convert don’t have the same identifier. We also end the location on the
left and conclude by Le-SharedReserved-To-Ptr.

– Case Le-MutBorrow-To-Ptr. Same as case Le-SharedReserved-To-Ptr.

– Case Le-RemoveAnon. Trivial.
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– Case Le-Merge-Locs. This one is subtle. Let’s name `0 the location we end, `1 the outer
location and `2 the inner location we merge with `1. We might have that `2 = `0. If this happens,
it means that there are no borrows or loans with identifier `2, meaning that the substitution
applied by Le-Merge-Locs has no effect. In particular, if we end `2 in the left state by
Reorg-End-Loc then we get the same state as on the right and conclude by reflexivity of .
We might also have that `1 = `0. In this case, we also end the outer location `1 in the left state
then conclude by applying Le-Subst to substitute `2 (the inner location identifier) with `1. If we
are in one of the above cases, we apply Reorg-End-Loc and conclude by Le-Merge-Locs.

– Case Le-SharedLoan-To-Loc. We apply Reorg-End-Loc to the left state (there must
be a location which corresponds to the location we end on the right - the shared loan and this
location can not be related) and conclude by Le-SharedLoan-To-Loc.

– Case Le-Box-To-Loc. Straightforward. We apply Reorg-End-Loc to the left state and
conclude by Le-Box-To-Loc.

– Case Le-Subst. We apply Reorg-End-Loc to the left state, potentially on the substituted
identifier, and conclude either by reflexivity or by Le-Subst.

• Case Reorg-Activate-Reserved. By induction on ⌦l  ⌦0
r.

– Reflexive case. Trivial.

– Transitive case. Trivial by the induction hypotheses.

– Case Le-SharedReserved-To-Ptr. If the borrow we activate is not the one we con-
vert to a pointer, we apply Reorg-Activate-Reserved on the left state and conclude
by Le-SharedReserved-To-Ptr. If it is the same, we do nothing on the left state and
conclude by Le-MutBorrow-To-Ptr (the premises of Reorg-Activate-Reserved give
us the premises we need for Le-MutBorrow-To-Ptr).

– Case Le-MutBorrow-To-Ptr. The borrow we activate can not be the same as the borrow
we convert to a pointer. This means we can apply Reorg-Activate-Reserved to the left
environment and conclude by Le-MutBorrow-To-Ptr.

– Case Le-RemoveAnon. Trivial.

– Case Le-Merge-Locs. The locations we merge can’t have the same identifier as the borrow we
activate. we can apply Reorg-Activate-Reserved to the left environment and conclude by
Le-Merge-Locs.

– Case Le-SharedLoan-To-Loc. Similar to Le-SharedReserved-To-Ptr.

– Case Le-Box-To-Loc. We apply Reorg-Activate-Reserved to the left state and con-
clude by Le-Box-To-Loc.

– Case Le-Subst. We make a case disjunction on whether the borrow we activate is the one on
which we apply the substitution to use Reorg-Activate-Reserved on the proper borrow in
the left state and conclude by Le-Subst.

We finally turn to the proof of the target theorem, that is 2.

Proof
By induction on ⌦r `hlpl+ s (r, ⌦0

r).
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• Case empty statement. Trivial.

• Case E-Reorg. By Lemma 8.

• Case s0; s1. Trivial by the induction hypotheses.

• Case p :=: rv. By Lemma 7.

• Case if then else. Trivial by the induction hypotheses.

• Case match. Trivial by the induction hypotheses.

• Case free p. The reasoning is similar to the move p and p := cases in Lemmas 1 7. The proof is
straightforward by induction on ⌦l  ⌦r. The interesting case is the combination of E-Box-Free
in the right state and Le-Box-To-Loc as the relation between the two states. By applying
Reorg-End-Ptr then HLPL-E-Box-Free to the left state we get equal states and conclude by
reflexivity of . Importantly, the rule E-Box-Free was written so that only the content of the box
gets moved to an anonymous value, so that we can relate E-Box-Free to HLPL-E-Box-Free.

• Case return. Trivial.

• Cases panic, break i, continue i. Trivial.

• Case loop. Trivial by the induction hypotheses.

• Case function call. The rule is heavy but the proof is straightforward. We use the Lemma 1 to relate
the states resulting from evaluating the operands given as inputs to the function (trivial induction
on the number of inputs). We easily get that the states resulting from ` push_stack are related
(again, induction on the number of inputs then on the number of local variables which are not used
as inputs). The induction hypothesis gives us that the states are related after evaluation of body. If
the tag is panic we are done. If it is return, we prove that the states resulting from ` pop_stack are
related (induction on the number of local variables, and we use 7 for the assignments which “drop”
the local variables). Finally, we do a reasoning similar to the one we did in 7 to show that the states
are still related after assigning to the destination.



Appendix D

Forward Simulation Between PL and
HLPL

The Pointer Language (PL) uses an explicit heap adapted from the CompCert memory
model, where the memory is a map from block id to sequence of memory cells, and
each memory cell contains a word. We do not fix the architecture (that is, the width
of a word) as this is not relevant to the proof. An address is a block id and an offset
inside this block. In this model, values are sequences of cells; for instance, a pair is
the concatenation of the cells of its sub-values. Similarly to HLPL, PL doesn’t make
any distinctions between shared borrows and mutables borrows, which are modeled as
pointers. Because PL operates over the same AST as LLBC, the evaluation of places is
still relatively high-level and requires typing information to compute the proper offsets;
for this purpose, memory blocks are typed, and those types are used for the sole purpose
of guiding those projections. Also note that the simulation proof relies on the fact that
the rules for HLPL and LLBC preserve the types (e.g., see W-Base in Figure 9.4 - we
made the types implicit in most of the rules, in particular in the body of the paper, for
the purpose of clarity) so it is not possible to update a value with a value of a different
type, in order to enforce the fact that the size of the values is preserved. Similarly to
what CompCert does, every variable has its own memory block, every allocation inserts
a fresh memory block in the heap, while deallocation removes the corresponding block.
We always deallocate a complete block at once (we do not deallocate sub-blocks). We
do not distinguish allocations on the stack and allocations on the heap; however, as we
forbid double frees, deallocating a block allocated on the stack (i.e., a variable) leads to
the program eventually being stuck as we deallocate variables when popping the stack.

We show the grammar of values and states in Figure D.1. Values are addresses (a
block id and an offset), literals (which must fit into a word), or undefined values. We
use the symbol h for undefined values to distinguish them from ? values that we use
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v ::= value

addr address

true | false | ni32 | nu32 | ... literal constants

h undefined value

addr ::= address

(bi, n) block id and offset

⌦LLBC ::= { env : x �!
partial, inj

bi, heap : bi �!
partial

[v] : ⌧, stack : [[x]] } state

Figure D.1: Grammar of PL States and Values

sizeof ⌧ := 1 if ⌧ is a literal type

sizeof (⌧0, ⌧1) := sizeof ⌧0 + sizeof ⌧1

sizeof (⌧0 + ⌧1) := 1 +max(sizeof ⌧0, sizeof ⌧1) (we need an integer for the tag)

sizeof (Box ⌧) := 1

sizeof (& ⌧) := 1

sizeof (&mut ⌧) := 1

sizeof (µX. ⌧) := sizeof (⌧ [µX. ⌧
.
X])

Figure D.2: The sizeof Function

in LLBC. While we use ? to keep track of non-initialized values and lost permissions
such as moved values or ended borrows, in PL h is simply a non-initialized, poison
value [461]. Similarly to ?, it causes the program to get stuck if it ever attempts to read
them. But at the difference of LLBC, moving a value (PL-E-Move) leaves it unchanged
by behaving like a copy, while there is no such thing as ending a borrow or a pointer by
replacing it with a h.

As with our low-level memory model values are modeled as sequences of words, we
need to introduce a notion of type size to properly relate PL values and HLPL values
(Figure D.2).

We use the following notations. If s is a sequence, we use the standard notations
about subsequences by using intervals. For instance, (⌦.mem bi)[n; m[ is the sub-
sequence of ⌦.mem bi covering the cells from index n (included) to index m (excluded).
We also use the standard index notation: (⌦.mem bi)[i] is the cell at index i in sequence
⌦.mem bi. We define an “update” notation for sequences: (⌦.mem bi)[n; m[:= [~v] is ⌦

where the sub-sequence of ⌦.mem bi of indices [n; m[ has been udpated with [~v]. The
notation [~v] : ⌧ simply means that the sequence [~v] has length sizeof ⌧ , and nothing
more. In particular, we do not check any well-typedness property of those values.

We introduce read and write judgments, like in HLPL and LLBC. Those reading
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PL-ReadAddr-Var
⌦.env x = bi

` &⌦(x : ⌧)) (bi, 0)

PL-ReadAddress-Deref
` &⌦(p : {&, &mut, ⇤}⌧)) (bi, n) (⌦.mem bi)[n] = (bi0, n0)

` &⌦(⇤p : ⌧)) (bi0, n0)

PL-ReadAddress-ProjPairLeft
` &⌦(p : (⌧0, ⌧1))) (bi, n)

` &⌦(p.0 : ⌧0)) (bi, n)

PL-ReadAddress-ProjPairRight
` &⌦(p : (⌧0, ⌧1))) (bi, n) n+ sizeof ⌧0 < length⌦.mem bi

` &⌦(p.1 : ⌧1)) (bi, n+ sizeof ⌧0)

PL-ReadAddress-ProjSum
` &⌦(p : ⌧0 + ⌧1)) (bi, n)
n+ 1 < length⌦.mem bi

⌧ = ⌧0 _ ⌧ = ⌧1

` &⌦(p.0 : ⌧)) (bi, n+ 1)

PL-Read
` &⌦(p : ⌧)) (bi, n)

(⌦.mem bi)[n; sizeof ⌧ [= [~v]

` ⌦(p : ⌧)) [~v]

Figure D.3: Read Judgments for PL

PL-Write
` &⌦(p : ⌧)) (bi, n) ⌦0 = ((⌦.mem bi)[n; sizeof ⌧ [:= [~v])

` ⌦(p) [~v]) ⌦0

Figure D.4: Write Judgment for PL

and writing judgments are guided by types, which we use to compute address offsets
when reducing projections, and to compute the length of the sequence of cells we have
to read. We use this typing information only for the projections and nothing else. In
particular, we do not check any well-typedness property of the states.

For reading in the environment, we introduce two judgments (Figure D.3). The
judgment ` ⌦(p : ⌧) ) [~v] states that reading sizeof ⌧ cells at place p gives [~v]. The
judgment ` &⌦(p : ⌧) ) addr, states that addr is the address of the (sequence of)
value(s) at place p. Note that this judgment does not enforce that there are sizeof ⌧

cells available at addr. Also note that for sum values, we reserve the first cell for the
tag (see PL-ReadAddress-ProjSum).

For writing in environments we introduce the judgment ` ⌦(p)  [~v] ) ⌦0 (Fig-
ure D.4), which states that updating the cells at place p in ⌦ with the sequence of
values [~v] yields state ⌦0. The full judgment is in Figure D.4.

We define the rules to evaluate expressions in Figure D.5 and the rules to evaluate
statements in Figure D.6. The judgment ⌦ ` op + [~v : ⌧ ] has to be read as: evalu-
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PL-E-Ptr
` &⌦(p : ⌧)) addr

⌦(p) ` {&, &mut, &reserved} p + addr : ⇤⌧

PL-E-Move
` ⌦(p : ⌧)) [~v]

⌦(p) ` move p + [~v] : ⌧

PL-E-Copy
` ⌦(p : ⌧)) [~v]

⌦(p) ` copy p + [~v] : ⌧

PL-E-Constructor-Pair
⌦ ` op0 + [~v0] : ⌧0 ⌦ ` op1 + [~v1] : ⌧1

⌦ ` (op0, op1) + ([~v0] ++ [~v1]) : (⌧0, ⌧1)

PL-E-Constructor-Left
⌦ ` op + [~v] : ⌧0 [~v0] = [0] ++ [~v] ++ [~?] length [~v0] = sizeof (⌧0 + ⌧1)

⌦ ` Left op ~v0 : ⌧0 + ⌧1

PL-E-Constructor-Right
⌦ ` op + [~v] : ⌧1 [~v0] = [1] ++ [~v] ++ [~?] length [~v0] = sizeof (⌧0 + ⌧1)

⌦ ` Right op ~v0 : ⌧0 + ⌧1

Figure D.5: Evaluating Expressions in PL

ating op in ⌦ results in the sequence of values [~v] of length sizeof ⌧ (the type is only
used for the length of the sequence). One has to note that we encode sum values
as tagged unions, and the first cell is reserved for the tag (PL-E-Constructor-Left,
PL-E-Constructor-Right). The judgment ⌦ ` s (r, ⌦0) has to be read as: evalu-
ating statement s in state ⌦ leads to result r in state ⌦0.

In order to relate the PL states and the HLPL states we introduce a concretization
function which turns HLPL states into PL states. The concretization function is
parameterized by several auxiliary functions:

• blockof : x+`b �!
partial, inj

bi : ⌧ : partial, injective function from variable or box identifier

to typed block (a pair of a block identifier and a type).

• addrof : ` �!
partial

addr: partial function from a loan or a box identifier to an address.

We define the concretization functions C⌦ blockof addrof ⌦ and Cv blockof addrof v,
for functions and states respectively. We define the concretization function for states
below, and the concretization for values in Figure D.7.

C⌦ blockof addrof ⌦hlpl := {

env := �x{x 2 ⌦hlpl.env}. blockof x

mem := �bi{(bi, ⌧) 2 image(blockof)},

Cv blockof addrof (⌦hlpl.mem (blockof�1 bi) : ⌧),

stack := ⌦hlpl.stack }
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PL-E-Assign
⌦ ` op [~v] : ⌧ ` ⌦[p [~v]]) ⌦0

⌦ ` p := op ((), ⌦0)

PL-E-IfThenElse-T
⌦ ` op [true] ⌦ ` s0  (r, ⌦0)

⌦ ` if op then s0 else s1  (r, ⌦0)

PL-E-IfThenElse-F
⌦ ` op [false] ⌦ ` s1  (r, ⌦0)

⌦ ` if op then s0 else s1  (r, ⌦0)

PL-E-Match-Left
` ⌦(p)) [0] ++ [v] ⌦ ` s0  (r, ⌦0)

⌦ ` match pwith | Left ) s0 | Right ) s1  (r, ⌦0)

PL-E-Match-Right
` ⌦(p)) [1] ++ [v] ⌦ ` s1  (r, ⌦0)

⌦ ` match pwith | Left ) s0 | Right ) s1  (r, ⌦0)

PL-E-Return

⌦ ` return (return, ⌦)

PL-E-Panic

⌦ ` return (panic, ⌦)

PL-E-Break

⌦ ` break i (break i, ⌦)

PL-E-Continue

⌦ ` continue i (continue i, ⌦)

PL-E-New
bi fresh ⌦ ` op [~v] : ⌧

⌦0 = {⌦ with mem := ⌦.mem [ { bi! [~v] } }
⌦ ` new op ([(bi, 0)] : Box ⌧, ⌦0)

PL-E-Free
` ⌦(p : Box ⌧)) [(bi, 0)]

⌦0 = {⌦ with mem := ⌦.mem \ { bi } }
⌦ ` free p ((), ⌦0)

PL-E-Loop-Break-Inner
⌦ ` s (break 0, ⌦)

⌦ ` loop s ((), ⌦)

PL-E-Loop-Break-Outer
⌦ ` s (break i+ 1, ⌦)

⌦ ` loop s (break i, ⌦)

PL-E-Loop-Continue-Inner
⌦ ` s (continue 0, ⌦0)
⌦0 ` loop s (r, ⌦00)

⌦ ` loop s (r, ⌦00)

PL-E-Loop-Continue-Outer
⌦ ` s (continue i+ 1, ⌦)

⌦ ` loop s (continue i, ⌦)

PL-E-Loop-Panic
⌦ ` s (panic, ⌦)

⌦ ` loop s (panic, ⌦)

PL-E-Loop-Return
⌦ ` s (return, ⌦)

⌦ ` loop s (return, ⌦)

PL-E-PushStack
~bi fresh

⌦0 = { ⌦ with env = [
�������!
x! (bi, 0)] ++⌦.env, mem = [

�����!
bi! [~v]] ++⌦.mem, stack = [~x] :: ⌦.stack }

` pl_push_stack [
���!
x! ~v] ⌦ = ⌦0

PL-E-PopStack
⌦.stack = ([xret] ++ [�!xi ]) :: stack

0 ⌦.env = [xret ! biret] ++ [
������!
xi ! [

�!
bii]] ++ env0 ⌦.mem = [�!vret]

env
0 = ⌦.env \ {biret,

�!
bii} ⌦0 = { ⌦ with stack = stack

0, env = env
0, mem = mem

0 }
` pl_pop_stack ⌦ = ([�!vret], ⌦

0)

PL-E-Call
fh~_, ~⌧i = fn h~_i (�!xi :

�!⌧i ) (�!yj : �!⌧j ) (xret : ⌧) { s } 8 j,⌦j ` opj + ([�!vj ], ⌦j+1)

` pl_push_stack

✓
[xret ! [~?]] ++ [

������!
xj ! [�!vj ]] ++ [

������!
yk ! [~?]]

◆
⌦m = ⌦begin

⌦begin ` body  (r, ⌦end)

(r0, ⌦1) =

(
(panic, ⌦end) if r = panic

((), ⌦00
end) if r = return ^ ` pl_pop_stack ⌦end = (

��!
[vret], ⌦

0
end) ^ ` ⌦0

end[p [�!vret]]
mut) ⌦00

end

⌦0 ` p := fh~_, ~⌧i(�!opj) (r0, ⌦1)

Figure D.6: Evaluating Statements in PL
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Concrete-Lit
v is a literal value

Cv blockof addrof (v : ⌧) = [i]

Concrete-Bot
s = [

�!
h] length s = sizeof ⌧

Cv blockof addrof (? : ⌧) = s

Concrete-Pair
Cv blockof addrof v0 : ⌧0 = [~v]
Cv blockof addrof v1 : ⌧1 = [~w]

Cv blockof addrof ((v0, v1) : (⌧0, ⌧1)) = [~v] ++ [~w]

Concrete-Sum-Left
Cv blockof addrof v : ⌧0 = [~v]

s = [0] ++ [~v] ++ [
�!
h]

length s = sizeof (⌧0 + ⌧1)

Cv blockof addrof (Left v : ⌧0 + ⌧1) = s

Concrete-Sum-Right
Cv blockof addrof v : ⌧1 = [~v]

s = [0] ++ [~v] ++ [
�!
h]

length s = sizeof (⌧0 + ⌧1)

Cv blockof addrof (Right v : ⌧0 + ⌧1) = s

Concrete-Loc
Cv blockof addrof (v : ⌧) = [~v] : ⌧

Cv blockof addrof loc ` (v : ⌧) = [~v] : ⌧

Concrete-Ptr-Location
addrof `p = addr

Cv blockof addrof (Right ptr `p) = [addr] : ⇤⌧

Concrete-Ptr-Box
blockof `b = bi

Cv blockof addrof (Right ptr `b) = [(bi, 0)] : ⇤⌧

Figure D.7: Concretizing HLPL Values

In order to properly relate the structured values in the HLPL states to a lower-level
view with addresses and memory cells, we introduce the judgment blockof, addrof `
⌦hlpl(addr) ) (v : ⌧) in Figure D.8 which, given some mappings blockof and addrof,
defines what it means to read a value of a given type at an address in the HLPL
state ⌦hlpl. In order to define this judgment, we also introduce an auxiliary judgment
` (v : ⌧) + n) v0 : ⌧ 0 which states that reading the sub-value of v : ⌧ at offset n yields
v0 : ⌧ 0.

We define a compatibility predicate between an HLPL state ⌦hlpl and the auxiliary
concretization functions blockof and addrof in Figure D.9. More precisely, the predicate
compatible blockof addrof ⌦hlpl states that blockof must be defined for all the variables
and box identifiers in ⌦hlpl, and that addrof must be consistent with the low-level view
of ⌦hlpl with addresses defined in Figure D.8.

We define a relation  between PL states in Figure D.10. We need this relation
because of some semantic discrepancies between PL and HLPL. When concretizing a
sum value, we might need to pad it with a sequence of h so that it has the proper size.
As a result, we might get discrepancies between a concretized PL state in which we
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HLPL-Read-Address
⌦hlpl.env (blockof�1 ((bi, n))) = v : ⌧

` (v : ⌧) + n) v0 : ⌧

blockof, addrof ` ⌦hlpl((bi, n))) v0 : ⌧

HLPL-Read-Offset-0

` (v : ⌧) + 0) v : ⌧

HLPL-Read-Offset-Pair-Left
n  sizeof ⌧0

` (v0 : ⌧0) + n) v0 : ⌧ 0

` ((v0, v1) : (⌧0, ⌧1)) + n) v0 : ⌧ 0

HLPL-Read-Offset-Pair-Right
n � sizeof ⌧0

` (v1 : ⌧1) + n� sizeof ⌧0 ) v0 : ⌧ 0

` ((v0, v1) : (⌧0, ⌧1)) + n) v0 : ⌧ 0

HLPL-Read-Offset-Sum-Left
1  n  1 + sizeof ⌧0

` (v0 : ⌧0) + n� 1) v0 : ⌧ 0

` (Left v : ⌧0 + ⌧1)) + n) v0 : ⌧ 0

HLPL-Read-Offset-Sum-Right
1  n  1 + sizeof ⌧1

` (v1 : ⌧1) + n� 1) v0 : ⌧ 0

` (Right v : ⌧0 + ⌧1)) + n) v0 : ⌧ 0

HLPL-Read-Offset-Loc
` (v : ⌧) + n) v0 : ⌧ 0

` loc ` (v : ⌧) + n) v0 : ⌧ 0

Figure D.8: Reading Addresses in HLPL

compatible blockof addrof ⌦hlpl :=

domain ⌦hlpl.env ⇢ domain blockof ^
(8 `b 2 ⌦hlpl, `b 2 domain blockof) ^
(8 addr ` v, (blockof, addrof ` ⌦hlpl(addr)) loc ` v)) addrof ` = addr) ^
(8 ` 2 ⌦hlpl, 9 addr v, blockof, addrof ` ⌦hlpl(addr)) loc ` v)

Figure D.9: Compatibility Predicate for the Auxiliary Concretization Functions
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⌦  ⌦0 := States

⌦.env = ⌦0.env ^
⌦.stack = ⌦0.stack ^
⌦.mem  ⌦0.mem ^

m  m0 := Heaps

domain m = domain m0 ^
8 bi 2 domain m, m bi  m0 bi

[~v]  [~w] := Sequences of cells

length [�!vi ] = length [�!wi] ^
8 i, vi  wi

Figure D.10: The  Relation For PL States

update the variant of a sum and the concretization of the HLPL state after doing the
same update. Also, we get a discrepancy when evaluating the move operator: a move
invalidates the value in the HLPL state but not in its concretized PL state. The 
relation states that ⌦0  ⌦1 if ⌦0 and ⌦1 are equal everywhere but at the cells where
we have h in ⌦1.

We now define a relation  between PL states and HLPL states. Contrary to the
other relations in this paper and because the states of PL and HLPL are quite difference,
 is not defined as a series of transformations between states but in a more standard
manner.

Definition 3 (Refinement Between PL and HLPL). For ⌦pl a PL state and ⌦hlpl an
HLPL state, we state that ⌦pl and ⌦hlpl are in relation, noted ⌦pl  ⌦hlpl, if there exist
blockof, addrof such that:

compatible blockof addrof ⌦hlpl ^ ⌦pl  C⌦ blockof addrof ⌦hlpl

We now turn to the proof of the forward simulation between PL and HLPL. We
want to prove the theorem 10.

Theorem 10 (Forward Simulation From HLPL to PL). For all ⌦pl PL state and ⌦hlpl

HLPL state we have:

⌦pl  ⌦hlpl )

8 s r⌦hlpl
1 , ⌦hlpl `hlpl s (r, ⌦hlpl

1 ))

9⌦pl
1 , ⌦

pl `pl s (r, ⌦pl
1 ) ^ ⌦pl

1  ⌦hlpl
1

We need a series of auxiliary lemmas.
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The following lemma is straightforward to prove, but provides a crucial property to
make the proofs work for the expressions and assignments, which are the difficult cases.
In particular, it gives us that assignments don’t move or duplicate locations, meaning
the view of locations as addresses remains consistent between the HLPL state and the
PL state.

Lemma 9 (HLPL-Rvalue-NoLoc). For all ⌦hlpl HLPL state, rv, v and ⌦hlpl
1 such that

⌦hlpl `hlpl rv + (v, ⌦hlpl
1 ), there are no loc values in v.

Proof
By induction on ⌦hlpl `hlpl rv + (v, ⌦hlpl

1 ).

• Case copy p. Trivial induction on the value we read. We use the fact that copying a value in HLPL
returns the same value but where the locations have been removed (see Copy-Loc in particular).

• Case move p. Trivial by the premises of HLPL-E-Move.

• Case E-Ptr (& p &reserved p, &mut p). Trivial by the fact that the value is a pointer.

• Case new op. Trivial by the fact that the value is a pointer.

• Case constant. Trivial.

• Case Adt constructor. Trivial.

• Case unary/binary operations (not, neg, +, -, etc.). Trivial.

Lemma 10 (HLPL-PL-Read). For all ⌦pl PL state and ⌦hlpl HLPL state, blockof,
addrof we have:

compatible blockof addrof ⌦hlpl )

⌦pl  C⌦ blockof addrof ⌦hlpl )

8 p k v ⌧, (` ⌦hlpl(p)
k) v : ⌧))

9~v, ` ⌦pl(p : ⌧)
k) [~v] ^ [~v]  Cv blockof addrof v

Proof
Straightforward by induction on p.

Lemma 11 (Rvalue-Preserves-PL-HLPL-Rel). For all ⌦pl PL state and ⌦hlpl HLPL
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state, blockof, addrof we have:

compatible blockof addrof ⌦hlpl )

⌦pl  C⌦ blockof addrof ⌦hlpl )

8 rv v⌦hlpl
1 , ⌦hlpl `hlpl rv + (v, ⌦hlpl

1 ))

9 blockof1 addrof1 ~v,

⌦pl `pl rv + ~v ^

compatible blockof1 addrof1 ⌦
hlpl
1 ^

⌦pl
1  C⌦ blockof1 addrof1 ⌦

hlpl
1 ^

~v  Cv blockof1 addrof1 v

Proof
By induction on ⌦hlpl `hlpl rv + (v, ⌦hlpl

1 ).

• Case copy p. We use Lemma 10 and the fact E-Copy leaves the state unchanged.

• Case move p. We use Lemma 10 to relate the values we evaluate to. Relating the updated HLPL
state to the PL state is slightly more technical. The goal is implied by the following auxiliary lemma
(the proof is straightforward by induction on the path P ):

8P v0 v1 ⌧
�!v0 �!v1 ⌦hlpl

1 ,

compatible blockof addrof ⌦hlpl )

⌦hlpl ` P (v0)
mov) v1 : ⌧ )

no location 2 v1 )

⌦pl ` P ([�!v0 ])) [�!v1 ] : ⌧ )

[�!v1 ]  Cv blockof addrof v1 )

⌦hlpl ` P (v0) (? : ⌧)
mov) (v01, ⌦

hlpl
1 ))

⌦pl  C⌦ blockof addrof ⌦hlpl
1 ^ [�!v1 ]  Cv blockof addrof v01

• Case E-Ptr (& p &reserved p, &mut p). Similar to the move case, but if we insert a fresh location,
we have to update the addrof function to insert a mapping for the fresh location identifier.

• Case new op. We use the induction hypothesis, and need to insert a binding in blockof for the fresh
box.

• Case constant. Trivial.

• Case Adt constructor. Straightforward by using the induction hypotheses and the rules to evaluate
and concretize Adts.

• Case unary/binary operations (¬, +, -, etc.). Trivial.
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Lemma 12 (Assign-Preserves-PL-HLPL-Rel). For all ⌦pl PL state and ⌦hlpl HLPL
state we have:

⌦pl  ⌦hlpl )

8 p rv⌦hlpl
1 , ⌦hlpl `hlpl p := rv  ((), ⌦hlpl

1 ))

9 ⌦pl
1 , ⌦

pl `pl p := rv  ((), ⌦pl
1 ) ^ ⌦pl

1  ⌦hlpl
1

Proof
We do the proof by induction on p. It is very similar to the move case of Lemma 11. In particular,
we use the fact that there are no locations in the value we move (by Lemma 9), and in the value we
overwrite and gets saved to an anonymous value (by the premises of HLPL-E-Assign) 1.

Lemma 13 (Reorg-Preserves-PL-HLPL-Rel). For all ⌦pl PL state and ⌦hlpl HLPL
state we have:

⌦pl  ⌦hlpl ) 8 ⌦hlpl
1 , ⌦pl ,! ⌦hlpl ) ⌦hlpl  ⌦hlpl

1

Proof
By induction on ⌦pl ,! ⌦hlpl. By ⌦pl  ⌦hlpl there exist blockof, addrof such that:

compatible blockof addrof ⌦hlpl ^ ⌦pl  C⌦ blockof addrof ⌦hlpl

• Case Reorg-None. Trivial.

• Case Reorg-Seq. Trivial by the induction hypotheses.

• Case Reorg-End-Ptr. There exist ⌦[.], ` such that:

⌦hlpl = ⌦[ptr `]

⌦hlpl
1 = ⌦[?]

We have to show that for all bi box identifier we have:

⌦pl.mem bi  Cv blockof addrof (⌦hlpl
1 .mem (blockof�1 bi))

1The fact that we need the overwritten value in HLPL to not contain locations to be able to this
proof (otherwise we break the relation between the locations in the HLPL state and the addresses in
the PL state) is the reason why we ultimately need to forbid overwriting values which contain outer
loans in LLBC (see E-Move).
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Let’s pose:

[~v] := ⌦pl.mem bi

v0 = ⌦hlpl
0 .mem (blockof�1 bi)

v1 = ⌦hlpl
1 .mem (blockof�1 bi)

We have [~v]  Cv blockof addrof v0 and we want to show [~v]  Cv blockof addrof v1.

There are two cases, depending on whether the hole is in v1 or not. More formally, either we have
v1 = v0, in which case the proof is trivial, or there exists V [.] such that v0 = V [ptr `] and v1 = V [?].

The end of the proof is implied by the following auxiliary theorem, which is straightforward to prove
by induction on V [.]:

[~v]  Cv blockof addrof v0 )

v0 = V [ptr `]) v1 = V [?])

[~v]  Cv blockof addrof v1

• Case Reorg-End-Loc. Similar to above, but this time we have to update addrof to remove the
location identifier that we eliminate.

There exist ⌦[.], `, vs such that:

⌦hlpl = ⌦[loans ` vs]

⌦hlpl
1 = ⌦[vs]

Let’s pose addrof1 := addrof|(domain addrof)\{`} the restriction of addrof to its domain from which we
removed `. We show that:

⌦pl  C⌦ blockof addrof1 ⌦hlpl
1 ^ (1)

compatible blockof addrof1 ⌦hlpl
1 (2)

We show (1) the same way as in the Reorg-End-Ptr case. For (2), the difficult part is the last
two conjuncts:

(8 addr ` v, (blockof, addrof ` ⌦hlpl
1 (addr)) loc ` v)) addrof ` = addr) ^ (3)

(8 ` 2 ⌦hlpl
1 , 9 addr v, blockof, addrof ` ⌦hlpl

1 (addr)) loc ` v) (4)

For (1), we pose (bi, n) an address and do the proof by induction on ⌦hlpl
1 .mem bi (straightforward).

For (2), the compatibility assumption for ⌦hlpl gives us a candidate address (bi, n), and we conclude
the proof also by induction on ⌦hlpl

1 .mem bi.

We can finally turn to the proof of the target theorem (10).

• Case empty statement. Trivial.

• Case E-Reorg. By Lemma 13.

• Case s0; s1. Trivial by the induction hypotheses.
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• Case p := rv. By Lemma 12.

• Case if then else. Trivial by the induction hypotheses.

• Case match. Trivial by the induction hypotheses.

• Case free p. We remove one block from the map and end the corresponding pointer: straightforward.

• Case return. Trivial.

• Cases panic, break i, continue i. Trivial.

• Case loop. Trivial by the induction hypotheses.

• Case function call. Similar to the same case in the proof of 2. We leverage the fact that PL-E-Call
and E-Call have a very similar structure. We use the Lemma 11 to relate the states resulting
from evaluating the operands given as inputs to the function (trivial induction on the number of
inputs). We easily get that the states resulting from ` push_stack are related (again, induction
on the number of inputs then on the number of local variables which are not used as inputs; we
have to take care to extend the map blockof to account for the blocks freshly allocated for the local
variables). The induction hypothesis gives us that the states are related after evaluation of body. If
the tag is panic we are done. If it is return, we prove that the states resulting from ` pop_stack

are related (induction on the number of local variables, and we use 12 for the assignments which
“drop” the local variables; this time we have to remove the blocks which were allocated for the local
variables from the map blockof). Finally, we do a reasoning similar to the one we did in 12 to show
that the states are still related after assigning to the destination.





Appendix E

Forward Simulation Between LLBC
and LLBC#

We show the additional rules for LLBC# in Figure 10.2. We show the full rules for the
 relation about LLBC+ states in Figure 11.8. Figure 11.10 lists the rules we use to
transform values into fresh region abstractions (this judgment is used by Le-ToAbs),
while Figure 11.11 describes how to merge two region abstractions into one (used by
Le-MergeAbs).

We now turn to the proof that evaluation for LLBC+ preserves the relation  over
LLBC+ states. We need several auxiliary lemmas.

Lemma 14 (Rvalue-Preserves-LLBC+-Rel). For all ⌦l and ⌦r LLBC+ states and rv

right-value we have:

⌦l  ⌦r ) 8 vr ⌦0r, ⌦r `llbc+ rv + (vr, ⌦
0
r))

9 vl ⌦0l, ⌦l `llbc+ rv + (vl, ⌦
0
l) ^ (vl, ⌦

0
l)  (vr, ⌦

0
r)

where we define (vl, ⌦0l)  (vr, ⌦0r) as:

(vl, ⌦
0
l)  (vr, ⌦

0
r) := (⌦0l, _! vl)  (⌦0r, _! vr)

Proof
By induction on ⌦0

r, ⌦r `llbc+ rv + (vr, ⌦0
r).

• Case copy p. By induction on ⌦l  ⌦r.

– Case Le-ToSymbolic. The interesting case happens if in the right state we copy the symbolic
value we just introduced. If this happens, we use the fact that copying a symbolic value introduces
a fresh symbolic value (Copy-Symbolic) and apply Le-ToSymbolic twice to relate the
states (once for the original value, once for the copied value).

367
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– Case Le-MoveValue. We note that moving a value can only constrain the places we can
directly access in the right state. It also doesn’t have any effect on the values we indirectly access
through shared borrows (thanks to the premise that the hole is not inside a shared loan). Following
this intuition, we prove by induction on p that copy p reduces to the same value in the left state
and the right state, and leaves the states unchanged; we conclude by using Le-MoveValue.

– Case Le-Fresh-MutLoan. Similar to Le-MoveValue. We prove by induction on p that
copy p reduces to the same value in the left state and the right state, and leaves the states
unchanged; we conclude by Le-Fresh-MutLoan.

– Case Le-Fresh-SharedLoan. Similar to above. Here, the copy actually succeeds in the right
state if and only if it succeeds in the left state, and it yields the same value.

– Case Le-Reborrow-MutBorrow. Similar to case Le-Fresh-SharedLoan.

– Case Le-Fresh-SharedBorrow. Similar to case Le-Fresh-SharedLoan.

– Case Le-Reborrow-SharedLoan. We might use a shared borrow to copy the fresh sym-
bolic value in the right state and the original value in the left state. Similarly to the case
Le-ToSymbolic, we use the fact that Copy-Symbolic introduces a fresh symbolic value
and conclude by using Le-ToSymbolic twice if it happens.

– Case Le-Abs-End-SharedLoan. The shared loan in the region abstraction is not accessible
from the outside because there are no remanining borrows pointing to this value. The copied
value is the same in both states, and we conclude by Le-Abs-End-SharedLoan.

– Case Le-Abs-End-DupSharedBorrow.

Ending a shared borrow in a region abstraction doesn’t have any effect on the ` copy p judgement.
We conclude by Le-Abs-End-DupSharedBorrow.

– Case Le-Reborrow-SharedBorrow. Similar to the case Le-Reborrow-SharedLoan.

– Case Le-ToAbs.

We note that the shared loans, which are accessible from the non-anonymous values (and so
through the copy) are preserved by the �to-abs rules (in particular, ToAbs-SharedLoan). We
prove by induction on the value that: 8 loans ` v 2 ⌦l, loan

s ` v 2 ⌦r. This allows us to prove that
the copy operation reduces to the same values in the left and right states, and we conclude by
Le-ToAbs.

– Case Le-MergeAbs. Similar to Le-ToAbs: the shared loans are preserved (by induction on
the on derivation).

– Cases Le-ClearAbs, Le-Abs-ClearValue, Le-Abs-DeconstructPair,
Le-Abs-DeconstructSum. Similar to Le-ToAbs: the shared loans are preserved.

– Case Le-AnonValue. Similar to above.

• Case move p. By induction on ⌦l  ⌦r.

– Case Le-ToSymbolic. Case disjunction on wether we move the symbolic value or not. We
conclude by Le-ToSymbolic.

– Case Le-MoveValue. By induction on p, we get that move reduces to the same value in both
states, and yields two states related by Le-MoveValue.

– Case Le-Fresh-MutLoan. Similar to Le-MoveValue.

– Case Le-Fresh-SharedLoan. Similar to Le-MoveValue.
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– Case Le-Reborrow-MutBorrow. Similar to Le-MoveValue.

– Case Le-Fresh-SharedBorrow. Similar to Le-MoveValue.

– Case Le-Reborrow-SharedLoan. Similar to Le-MoveValue. We use the fact that we
can’t move a loaned value (R-SharedLoan, W-SharedLoan) to show that move p reduces
to the same value in both states.

– Case Le-Abs-End-SharedLoan. Similar to the case Le-Reborrow-SharedLoan.

– Case Le-Abs-End-DupSharedBorrow. Similar to Le-MoveValue (and simpler).

– Case Le-Reborrow-SharedBorrow. Similar to Le-Reborrow-SharedLoan, but
here we use the fact that we can’t dereference shared borrows when moving values.

– Case Le-ToAbs. We note that we can not dereference shared borrows when moving values; this
forbids us from jumping to anonymous values or region abstractions.

– Case Le-MergeAbs. Same as Le-ToAbs.

– Cases Le-ClearAbs, Le-Abs-ClearValue, Le-Abs-DeconstructPair,
Le-Abs-DeconstructSum. Same as Le-ToAbs.

– Case Le-AnonValue. Similar to above.

• Cases & p, &reserved . By induction on ⌦l  ⌦r.

– Case Le-ToSymbolic. Case disjunction on wether we borrow the symbolic value or not (we
might insert a shared borrow). We conclude by Le-ToSymbolic.

– Case Le-MoveValue. By induction on p, we get that move reduces to the same value in both
states, and yields two states related by Le-MoveValue (we might insert a shared loan in the
moved value).

– Case Le-Fresh-MutLoan. Similar to Le-MoveValue.

– Case Le-Fresh-SharedLoan. Similar to Le-MoveValue.

– Case Le-Reborrow-MutBorrow. Similar to Le-MoveValue.

– Case Le-Fresh-SharedBorrow. Similar to Le-MoveValue.

– Case Le-Reborrow-SharedLoan. Similar to Le-MoveValue and Le-ToSymbolic
(we might borrow the fresh symbolic value or one of the shared values which were moved to the
region abstraction; in the first case we have to convert one more shared borrow).

– Case Le-Abs-End-SharedLoan. The shared loan inside the region abstraction is not accessi-
ble as there are no remaining borrows to this value.

– Case Le-Abs-End-DupSharedBorrow. This has no impact on the evaluation.

– Case Le-Reborrow-SharedBorrow. Similar to Le-Reborrow-SharedLoan.

– Case Le-ToAbs. Similar to the copy p case: we use the fact that all the shared loans are
preserved in the region abstraction.

– Case Le-MergeAbs. Same as Le-ToAbs.

– Cases Le-ClearAbs, Le-Abs-ClearValue, Le-Abs-DeconstructPair,
Le-Abs-DeconstructSum. Same as Le-ToAbs.

– Case Le-AnonValue. Similar to above.

• Case &mut p. By induction on ⌦l  ⌦r. This is similar to the move p case, in particular because we
can’t mutably borrow shared values.
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– Case Le-ToSymbolic. Case disjunction on wether we mutably borrow the symbolic value or
not. We conclude by Le-ToSymbolic.

– Case Le-MoveValue. By induction on p, we get that & p reduces to the same value in both
states, and yields two states related by Le-MoveValue.

– Case Le-Fresh-MutLoan. Similar to Le-MoveValue.

– Case Le-Fresh-SharedLoan. Similar to Le-MoveValue.

– Case Le-Reborrow-MutBorrow. Similar to Le-MoveValue.

– Case Le-Fresh-SharedBorrow. Similar to the move case.

– Case Le-Reborrow-SharedLoan. Similar to the move case.

– Case Le-Abs-End-SharedLoan. Similar to the move case.

– Case Le-Abs-End-DupSharedBorrow. Similar to the move case.

– Case Le-Reborrow-SharedBorrow. Similar to the move case.

– Case Le-ToAbs. Similar to the move case.

– Case Le-MergeAbs. Similar to the move case.

– Cases Le-ClearAbs, Le-Abs-ClearValue, Le-Abs-DeconstructPair,
Le-Abs-DeconstructSum. Similar to the move case.

– Case Le-AnonValue. Similar to above.

• Case new op. We use the induction hypothesis.

• Case constant. Trivial: the states have no impact on the reduction of the constants, and are left
unchanged.

• Case Adt constructor. We use the induction hypothesis (the proof is similar to the new op) case.

• Case unary/binary operations (¬, neg, +, -, etc.). Trivial by the induction hypotheses.

We now prove the following lemma about assignments.

Lemma 15 (Assign-Preserves-LLBC+-Rel). For all ⌦l and ⌦r LLBC+ states, rv

right-value and p place we have:

⌦l  ⌦r ) 8⌦0r, ⌦r `llbc+ p := rv  ((), ⌦0r))

9⌦0l ⌦l `llbc+ p := rv  ((), ⌦0l) ^ ⌦0l  ⌦0r

Proof
Lemma 14 gives us that there exist vr, ⌦00

r , vl, ⌦00
l such that:

⌦r `llbc+ rv + (vr, ⌦
00
r ) ^

⌦l `llbc+ rv + (vl, ⌦
00
l ) ^

(vl, ⌦
00
l )  (vr, ⌦

00
r )

We do the proof by induction on (vl, ⌦00
l )  (vr, ⌦00

r ), then on the path p. The reasoning is very
similar to what we saw in the proof of lemma 14. Something important to note is that the value that
gets overwritten is always saved in a fresh (ghost) anonymous value; this allows us to conclude in most
situations.
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• Case Le-ToSymbolic. We have to consider several possibilities: 1. the symbolic value is in the
value we move; 2. the symbolic value gets moved to an anonymous value because of the assignment.
We conclude by Le-ToSymbolic.

• Case Le-MoveValue. Similar to above.

• Case Le-Fresh-MutLoan. Similar to above.

• Case Le-Fresh-SharedLoan. Similar to above.

• Case Le-Reborrow-MutBorrow. Similar to above.

• Case Le-Fresh-SharedBorrow. Similar to above.

• Case Le-Reborrow-SharedLoan. Similar to above.

• Case Le-Abs-End-SharedLoan. Modifications in region abstractions have no impact on writes
with the move capability.

• Case Le-Abs-End-DupSharedBorrow. Similar to above.

• Case Le-Reborrow-SharedBorrow. Similar to above.

• Case Le-ToAbs. We can’t use a move capability to write to an anonymous value, so we can
conclude by Le-ToAbs.

• Case Le-MergeAbs. Similar to above.

• Cases Le-ClearAbs, Le-Abs-ClearValue, Le-Abs-DeconstructPair,
Le-Abs-DeconstructSum. Similar to above.

• Case Le-AnonValue. Similar to above.

We now prove that reorganizations preserve the relation between HLPL+ states.

Lemma 16 (Reorg-Preserves-LLBC+-Rel). For all ⌦l and ⌦r HLPL+ states we have:

⌦l  ⌦r ) 8 ⌦0r, ⌦r ,! ⌦0r )

9 ⌦0l, ⌦l ,! ⌦0l ^ ⌦0l  ⌦0r

Proof
By induction on ⌦r ,! ⌦0

r.

• Case Reorg-None. Trivial.

• Case Reorg-Seq. Trivial by the induction hypotheses.

• Case Reorg-End-MutBorrow. By induction on ⌦l  ⌦r.

– Case Le-ToSymbolic. Case disjunction on whether the symbolic value is inside the mutably
borrowed value or not. We conclude by Le-ToSymbolic.

– Case Le-MoveValue. Similar. An important point is that the moved value can’t come from
a region abstraction (this is important because we can’t end borrows which are inside region
abstractions: we have to end the abstraction first).

– Case Le-Fresh-MutLoan. Similar.

– Case Le-Fresh-SharedLoan. Similar.
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– Case Le-Reborrow-MutBorrow. We have to make a case disjunction on whether we end
the fresh borrow `1 or not. If no, we conclude by Le-Reborrow-MutBorrow. If yes, the
premises of Reorg-End-MutBorrow give us that the hole is not inside a shared loan, and
there are no loans in v. This allows us to conclude by using Le-MoveValue.

– Case Le-Fresh-SharedBorrow. We conclude by Le-Fresh-SharedBorrow.

– Case Le-Reborrow-SharedLoan. We conclude by Le-Reborrow-SharedLoan.

– Case Le-Abs-End-SharedLoan. We conclude by Le-Abs-End-SharedLoan.

– Case Le-Abs-End-DupSharedBorrow. We conclude by Le-Abs-End-DupSharedBorrow.

– Case Le-Reborrow-SharedBorrow. We conclude by Le-Abs-End-DupSharedBorrow.

– Case Le-ToAbs. We can not end borrows in region abstractions with Reorg-End-MutBorrow
(we have to use Reorg-End-Abstraction). However, we can end a mutable loan inside a
region abstraction. If the mutable loan is not inside the region abstraction we just introduced, we
conclude by Le-ToAbs. Otherwise, we prove that ending the same mutable loan on the left (it
must be in the anonymous variable we convert to an abstraction) then converting the anonymous
variables to a region abstraction by Le-ToAbs yields the same state as on the right (the proof
is by induction on the value we convert).

– Case Le-MergeAbs. Similar to Le-ToAbs. The difficult case is MergeAbs-Mut; the
important point to notice is that it makes borrows and loans disappear in the right state, meaning
there are more borrows and loans in the left state (this is important, because we don’t have a
well-formedness assumption). In particular, if the mutable loan we end is in the merged abstraction,
then it is also present in one of the two initial abstractions in the left state, and the corresponding
borrow is not inside a region abstraction.

– Cases Le-ClearAbs, Le-Abs-ClearValue, Le-Abs-DeconstructPair,
Le-Abs-DeconstructSum. Trivial.

– Case Le-AnonValue. Trivial.

• Case Reorg-End-SharedReservedBorrow. By induction on ⌦l  ⌦r.

– Case Le-ToSymbolic. Trivial.

– Case Le-MoveValue. Case disjunction on wether the borrow is moved or not; we conclude by
Le-MoveValue. Similarly to the Reorg-End-MutBorrow case, an important point is
that the moved value can’t come from a region abstraction (this is important because we can’t
end borrows which are inside region abstractions: we have to end the abstraction first).

– Case Le-Fresh-MutLoan. The ended borrows is necessarily independent from the fresh
mutable loan; we conclude by Le-Fresh-MutLoan.

– Case Le-Fresh-SharedLoan. We conclude by Le-Fresh-SharedLoan.

– Case Le-Reborrow-MutBorrow. Similar to above.

– Case Le-Fresh-SharedBorrow. On the right we might terminate the fresh shared borrow in
which case we conclude by Le-AnonValue; otherwise we conclude with Le-Fresh-SharedBorrow.

– Case Le-Reborrow-SharedLoan. We can not end any of the borrows inside the fresh region
abstraction, meaning we can not end the fresh borrow nor the borrows inside the shared value.
We conclude by Le-Reborrow-SharedLoan.

– Case Le-Abs-End-SharedLoan. We conclude by Le-Abs-End-SharedLoan.
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– Case Le-Abs-End-DupSharedBorrow. We can not directly end a borrow inside a region
abstraction; we conclude by Le-Abs-End-DupSharedBorrow.

– Case Le-Reborrow-SharedBorrow. This one is slightly technical. there exist ⌦[ . ], `0, `1,
v, �, A0 such that:

?, loanm, borrows,r,m /2 v

loan
s `0 v 2 ⌦l

⌦l = ⌦[ borrows `0 ]

⌦r = ⌦[ borrows `1 ], A0 { borrows `0, loan
s `1 � }

The difficult case happens when we end the borrow `1, so this is the case we focus on (in the other
case, we conclude by Le-Reborrow-SharedBorrow). We do no reorganization on the left.
We have to prove:

⌦[ borrows `0 ]  ⌦[? ], A0 { borrows `0, loan
s `1 � }

Because we could end `1 on the right, necessarily the hole on the left is not inside a shared loan.
This means we can move it to an anonymous value by using Le-MoveValue. We get:

⌦[ `0 ]  ⌦[? ], _! borrow
s `0

We now apply Le-Reborrow-SharedBorrow to borrow
s `0. We get:

⌦[ `0 ]  ⌦[? ], _! borrow
s `1, A1 { borrows `0, loan

s `1 � }

We apply Le-ToAbs to borrow
s `0, then merge the two region abstractions with Le-MergeAbs,

taking care of using MergeAbs-Shared to get rid of borrows `1. QED.

– Case Le-ToAbs. We can not end a borrow which was moved to a region abstraction; the borrow
we end on the right state was thus not in the anonymous value we converted to an abstraction; we
can end it in the left state and conclude by Le-ToAbs.

– Case Le-MergeAbs. Similar to Le-ToAbs.

– Cases Le-ClearAbs, Le-Abs-ClearValue, Le-Abs-DeconstructPair,
Le-Abs-DeconstructSum. Trivial.

– Case Le-AnonValue. Trivial.

• Case Reorg-End-SharedLoan. By induction on ⌦l  ⌦r.

– Case Le-ToSymbolic. Trivial.

– Case Le-MoveValue. Trivial.

– Case Le-Fresh-MutLoan. Trivial.

– Case Le-Fresh-SharedLoan. We might end the fresh shared loan, in which case the right
state become equal to the left state; we conclude by reflexivity of .

– Case Le-Reborrow-MutBorrow. Trivial.

– Case Le-Fresh-SharedBorrow. Trivial (we can not end the shared loan from which we
created a new shared borrow).
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– Case Le-Reborrow-SharedLoan. Because there is borrow
s `1 in the region abstraction, we

can not end loan
s `1 � on the right. We can end the shared loan `0, if there are no shared borrows for

`0. If it is the case, we do no reorganization on the left, then use Le-Reborrow-SharedLoan
in combination with Le-Abs-End-SharedLoan. In the other situations, we can conclude by
Le-Reborrow-SharedLoan.

– Case Le-Abs-End-SharedLoan. Trivial.

– Case Le-Abs-End-DupSharedBorrow. Trivial.

– Case Le-Reborrow-SharedBorrow. We can not end any of the shared loans for `0 or `1

on the right; we easily conclude by Le-Reborrow-SharedBorrow.

– Case Le-ToAbs. If we end one of the shared loans which were moved to the fresh region
abstraction, we use Le-ToAbs then Le-Abs-End-SharedLoan. Otherwise we end the
corresponding shared loan on the left then conclude by Le-ToAbs.

– Case Le-MergeAbs. If the shared loan we end doesn’t appear inside the merged region abstrac-
tion, we end the corresponding loan on the left and conclude by Le-MergeAbs. Otherwise, we
simply use Le-MergeAbs then Le-Abs-End-SharedLoan.

– Cases Le-ClearAbs, Le-Abs-ClearValue, Le-Abs-DeconstructPair,
Le-Abs-DeconstructSum. Trivial.

– Case Le-AnonValue. Trivial.

• Case Reorg-Activate-Reserved. By induction on ⌦l  ⌦r.

– Case Le-ToSymbolic. Trivial.

– Case Le-MoveValue. Trivial.

– Case Le-Fresh-MutLoan. Trivial.

– Case Le-Fresh-SharedLoan. Trivial.

– Case Le-Reborrow-MutBorrow. Trivial.

– Case Le-Fresh-SharedBorrow. The borrow we activate can’t have the same identifier
as the fresh shared borrow; we can thus activate the same borrow on the left and conclude by
Le-Fresh-SharedBorrow.

– Case Le-Reborrow-SharedLoan. The borrow we activate can not be `1 because there is a
corresponding shared borrow, nor `0, because the shared loan is in a region abstraction. We can
thus activate the same borrow on the left and conclude by Le-Reborrow-SharedLoan.

– Case Le-Abs-End-SharedLoan. Trivial.

– Case Le-Abs-End-DupSharedBorrow. Trivial.

– Case Le-Reborrow-SharedBorrow. Similar to Le-Reborrow-SharedLoan.

– Case Le-ToAbs. We can not move reserved borrows to region abstractions, and can not activate
borrows associated to loans in region abstractions. We can thus activate the same borrow on the
left and conclude by Le-ToAbs.

– Case Le-MergeAbs. Similar to Le-ToAbs.

– Cases Le-ClearAbs, Le-Abs-ClearValue, Le-Abs-DeconstructPair,
Le-Abs-DeconstructSum. Trivial.

– Case Le-AnonValue. Trivial.
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• Case Reorg-End-Abstraction. By induction on ⌦l  ⌦r.

– Case Le-ToSymbolic. Trivial.

– Case Le-MoveValue. Trivial (the moved value can’t be inside a region abstraction; we can
thus end the region abstraction on the left and conclude by Le-MoveValue).

– Case Le-Fresh-MutLoan. Trivial (we can’t end a region abstraction in which there is a loan).

– Case Le-Fresh-SharedLoan. Trivial (similar to the case Le-Fresh-MutLoan).

– Case Le-Reborrow-MutBorrow. The mutable borrow might be inside the region abstrac-
tion we end, but we can still conclude Le-Reborrow-MutBorrow. We also conclude by
Le-Reborrow-MutBorrow in the other cases.

– Case Le-Fresh-SharedBorrow. Trivial (note that we can’t end a region abstraction in
which there is a loan).

– Case Le-Reborrow-SharedLoan. Trivial (note that we can’t end a region abstraction in
which there is a loan).

– Case Le-Abs-End-SharedLoan. We might end the region abstraction in which we just ended
the loan. In this case, we also end the loan and the region abstraction on the left, and conclude
by reflexivity of . Otherwise, we end the corresponding region on the left, and conclude by
Le-Abs-End-SharedLoan.

– Case Le-Abs-End-DupSharedBorrow. If we end the region abstraction from which we
removed the duplicated borrow, we can end the same region abstraction on the left, and end one
of the borrows which were reintroduced into the context. We then need to remove the anonymous
variable containing ? that is left in place of the borrow (there is no primitive rule for  to do
that, but we can actually achieve the same result by using Le-ToAbs on this value).

– Case Le-Reborrow-SharedBorrow. Trivial.

– Case Le-ToAbs. If the abstraction we end is not the one we just introduced, we can end
the corresponding abstraction on the left an conclude by Le-ToAbs. If it is the same region
abstraction, then this abstraction doesn’t contain any loans. This means that the anonymous
value we converted to a region abstraction only contains borrows (we get this by a simple induction
on the value). Also, it doesn’t contain nested borrows (because it doesn’t contain shared loans,
and because of the premises of ToAbs-MutBorrow). Finally, the mutably borrowed values
don’t contain ? (again, because of the premises of ToAbs-MutBorrow). We can thus apply
Le-ToSymbolic on all the mutably borrowed value of the anonymous value (note that when
ending a region abstraction, we reintroduce the mutable borrows with fresh symbolic values in
the context; see Reorg-End-Abstraction). We can then move all the borrows from the
anonymous to their own anonymous values (by Le-MoveValue; we showed before that those
borrows don’t appear in shared loans) and finally get rid of the original anonymous value by using
the same technique as in the case Le-Abs-End-DupSharedBorrow.

– Case Le-MergeAbs. If the abstraction we end is not the merged abstraction, we end the corre-
sponding abstraction on the left and conclude by Le-MergeAbs. If it is the same abstraction,
we can end the first merged abstraction on the left, the borrows it reintroduced in the context
and whose corresponding loans are in the second abstraction, then the second abstraction. In
particular, we note that we could end the merged abstraction only if, for all pairs borrow/loan
such that the borrow was in the first abstraction and the loan in the second, we correctly used
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MergeAbs-Mut. The borrows consumed during the merge by using MergeAbs-Mut are
the ones we need to end on the left, after ending the first abstraction, so that we can end the
second. Finally, we conclude by the reflexivity of .

– Cases Le-ClearAbs, Le-Abs-ClearValue, Le-Abs-DeconstructPair,
Le-Abs-DeconstructSum. Trivial.

– Case Le-AnonValue. Trivial.

We now turn to the proof of the target theorem.

Theorem 11 (Eval-Preserves-LLBC+-Rel). For all ⌦l and ⌦r LLBC+ states we have:

⌦l  ⌦r ) 8 s vr ⌦0r, ⌦r `llbc+ s (r, ⌦0r))

9 ⌦0l, ⌦l `llbc+ s + (r, ⌦0l) ^ ⌦0l  ⌦0r

Proof
By induction on ⌦r `llbc+ s  (r, ⌦0

r).

• Case empty statement. Trivial.

• Case E-Reorg. By Lemma 16.

• Case s0; s1. We use the induction hypotheses, then have to consider all the states resulting from
evaluating s0; this is straightforward.

• Case p := rv. By Lemma 15.

• Case if then else. Trivial by the induction hypotheses.

• Case match. Trivial by the induction hypotheses.

• Case free p. The reasoning is similar to the move p and p := cases in Lemmas 14 and 15. The proof
is straightforward by induction on ⌦l  ⌦r.

• Case return. Trivial.

• Cases panic, break i, continue i. Trivial.

• Case loop. Trivial by the induction hypotheses.

• Case function call. Similar to the same case in the proof of 2. Note that we study LLBC+ here,
not LLBC#, meaning the rule we need to consider is E-Call, not E-Call-Symbolic. We use
the Lemma 14 to relate the states resulting from evaluating the operands given as inputs to the
function (trivial induction on the number of inputs). We easily get that the states resulting from
` push_stack are related (again, induction on the number of inputs then on the number of local
variables which are not used as inputs). The induction hypothesis gives us that the states are related
after evaluation of body. If the tag is panic we are done. If it is return, we get that the states resulting
from ` pop_stack are related (induction on the number of local variables, and we use 15 for the
assignments which “drop” the local variables). Finally, we do a reasoning similar to what we did in
15 to show that the states are still related after assigning to the destination.



Appendix F

Forward Simulation for LLBC+ and
LLBC#

We present the definitions of init, final, inst � sig in figures Figure 10.4, Figure 10.5,
Figure 11.14 and Figure 10.3.

The following substitution lemmas are trivial but crucial in several situations.

Lemma 17 (Le-Subst). For all ⌦l, ⌦r LLBC+ states and subst identifier substitution
we have (where subst ⌦ is a pointwise substitution):

⌦l  ⌦r ) subst ⌦l  subst ⌦r

Proof.

The proof is straightforward by induction on ⌦  ⌦0.

• Reflexive case. Trivial.

• Transitive case. Trivial by the induction hypothesis.

• Case Le-ToSymbolic. There exist ⌦[.], v and � fresh such that:

borrows, loans, ? 62 v ^ ⌦l = ⌦[v] ^ ⌦r = ⌦[�]

A trivial induction on v gives us that, as there are no borrows, loans and ? in v (premise of the
rule) then there are no borrows, loans and ? in subst v. Moreover, as subst is injective we have that
subst � if fresh for ⌦l. We pose:

⌦0[.] := (subst ⌦)[.]

v0 := subst v0

�0 := subst �

377
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We have (trivial induction on ⌦[.], comes from the fact that subst is applied pointwise):

subst ⌦l = subst (⌦[v])

= (subst ⌦)[subst v])

= ⌦0[v0]

Similarly, we have: subst ⌦r = ⌦0[�0]. Hence: subst ⌦l  subst ⌦r.

• Case Le-MoveValue. Trivial. We use the fact that the substitution is pointwise (like in the
Le-ToSymbolic case).

• Case Le-Fresh-MutLoan. Similar to the Le-ToSymbolic case.

• Case Le-Fresh-SharedLoan. Similar to the Le-ToSymbolic case.

• Case Le-Reborrow-MutBorrow. Similar to the Le-ToSymbolic case.

• Case Le-Fresh-SharedBorrow. Similar to the Le-ToSymbolic case.

• Case Le-Reborrow-SharedLoan. Similar to the Le-ToSymbolic case.

• Case Le-Abs-End-SharedLoan. Similar to the Le-ToSymbolic case.

• Case Le-Abs-End-DupSharedBorrow.Similar to the Le-ToSymbolic case.

• Case Le-Reborrow-SharedBorrow. Similar to the Le-ToSymbolic case.

• Case Le-ToAbs. We need the auxiliary lemma:

8v ~A, v �to-abs ~A) subst v �to-abs
subst (�to-abs ~A)

The proof is straightforward by induction on v �to-abs ~A.

• Case Le-MergeAbs. We need the auxiliary lemma:

8A0 A1 A, ` A0 on A1 = A)` subst A0 on subst A1 = subst A

The proof is straightforward by induction on ` A0 on A1 = A.

• Cases Le-ClearAbs, Le-Abs-ClearValue, Le-Abs-DeconstructPair,
Le-Abs-DeconstructSum, Le-AnonValue. Similar to the Le-MoveValue case.

Lemma 18 (Eval-Subst-LLBC+). For all ⌦, ⌦0 LLBC+ states, s statement, r control-
flow tag and subst identifier substitution we have:

⌦  ⌦0 )

⌦ ` s (r, ⌦0))

subst ⌦ ` s (r, subst ⌦0)

Proof.Like with the proof of the simulation for LLBC+, we have to introduce auxiliary lemmas

for evaluating rvalues and applying reorganizations. All the proofs are straightforward by induction on

the evaluation or reorganization derivations, and are actually very similar to the proof of Lemma 17.
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We have a lemma similar to the above one for LLBC# evaluations (omitted).

We need the following framing lemma for . Note that as the transformation rules
for  are quite local we don’t need very strong disjointness conditions. The disjointness
condition is given by le_framable and states that: 1. the fresh identifiers introduced in
⌦0 are not present in the frame (this allows us to preserve freshness); 2. the initial state
⌦ and the frame ⌦f don’t use the same identifiers, put aside the fact that we allow
some borrows in the partial state ⌦ to be dangling, by pointing to loans in the frame
⌦f (we will need this condition when handling function calls).

Lemma 19 (Frame Rule for  in LLBC+). For all ⌦, ⌦0 LLBC+ states, we have:

⌦  ⌦0 ) 8 ⌦f , framable ⌦ ⌦0 ⌦f ) ⌦ [ ⌦f  ⌦0 [ ⌦f

where:

framable ⌦ ⌦0 ⌦f :=

(8 ` 2 ⌦0, ` /2 ⌦) ` /2 ⌦f ) ^ (1)

(8 �, � 2 ⌦ _ � 2 ⌦0 ) � /2 ⌦f ) ^ (2)

(8 A, A 2 ⌦ _ A 2 ⌦0 ) A /2 ⌦f ) ^ (3)

(8 ` 2 ⌦, ` 2 ⌦f )

(borrowm ` v 2 ⌦ ^ loan
m ` /2 ⌦) _

(borrows ` 2 ⌦ ^ borrow
s ` 2 ⌦0 ^ loan

s ` v /2 ⌦0)) (4)

Proof.We do the proof by induction on ⌦  ⌦0.

• Reflexive case. Trivial.

• Transitive case. This is the difficult case: if we want to use the induction hypotheses we have to pay
attention to the framable condition. We take care of this mostly by using the substitution lemma 17.

More precisely, the facts framable ⌦ ⌦00 ⌦f and framable ⌦00 ⌦0 ⌦f don’t necessarily hold. However,
we can build subst s.t.:

framable ⌦ subst ⌦00 ⌦f ^

framable subst ⌦00 ⌦0 ⌦f ^

⌦  subst ⌦00  ⌦0

For instance, if there exists � 2 ⌦00, we have to prove that � /2 ⌦f . If � 2 ⌦ or � /2 ⌦0 we simply use
(2). However, it may happen that � /2 ⌦ and � /2 ⌦0, if a transformation (e.g., Le-ToSymbolic)
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introduces a fresh � when transforming ⌦ to ⌦00, then another transformation (e.g., Le-MoveValue
then Le-ToAbs) removes it when transforming ⌦00 to ⌦0. In this situation, we just have to pick �0

such that �0 /2 ⌦, ⌦0 ⌦00, ⌦f and pose subst such that subst is the identity but on � where we define
it as: subst � = �0. We then use 17 to prove: ⌦  subst ⌦00  ⌦0. By using this technique, we can
make sure (2) and (3) are satisfied for ⌦ and ⌦00, and for ⌦00 and ⌦0; that is:

(8 �, � 2 ⌦ _ � 2 ⌦00 ) � /2 ⌦f ) ^

(8 A, A 2 ⌦ _ A 2 ⌦00 ) A /2 ⌦f )

and:

(8 �, � 2 ⌦00 _ � 2 ⌦0 ) � /2 ⌦f ) ^

(8 A, A 2 ⌦00 _ A 2 ⌦0 ) A /2 ⌦f )

(1) and (4) are more difficult. We can make sure that (1) is satisfied for ⌦ and ⌦00 (same technique).
Then, given ` 2 ⌦0 such that ` /2 ⌦00, we want to show that ` /2 ⌦f . If ` /2 ⌦ it is trivial by (1).
However, it may happen that ` 2 ⌦: it means that ` was originally in ⌦, that we removed it (because
of Le-Abs-End-SharedLoan or MergeAbs-Mut), then reused it in a rule which introduces
a fresh loan identifier. But this is actually forbidden by (4), and we use this fact.

By induction on ⌦  ⌦0 we prove that:

(8 ` 2 ⌦00, ` 2 ⌦f )

(borrowm ` v 2 ⌦00 ^ loan
m ` /2 ⌦00) _

(borrows ` 2 ⌦00 ^ borrow
s ` 2 ⌦0 ^ loan

s ` v /2 ⌦0))

We then reuse this to prove (by contradiction and) by induction on ⌦00  ⌦0 that: 8 ` 2 ⌦0, ` /2
⌦00 ) ` /2 ⌦f .

This allows us to use the induction hypotheses, and conclude the proof.

• Case Le-ToSymbolic. There exist ⌦h[.], v and � fresh for ⌦l such that:

borrows, loans, ? 62 v ^ ⌦ = ⌦h[v] ^ ⌦0 = ⌦h[�]

Because of (2) in the framable ⌦ ⌦0 ⌦f assumption we have that � is fresh for ⌦ [ ⌦f . Posing
⌦0

h[.] := ⌦h[.] [ ⌦f we get:
⌦ [ ⌦f = ⌦0

h[v]⌦
0 [ ⌦f = ⌦0

h[�]

Hence: ⌦ [ ⌦f  ⌦0 [ ⌦f .

• Case Le-MoveValue. Trivial (we don’t introduce fresh identifiers).

• Case Le-Fresh-MutLoan. Similar to the Le-ToSymbolic case.

• Case Le-Fresh-SharedLoan. Similar to the Le-ToSymbolic case.

• Case Le-Reborrow-MutBorrow. Similar to the Le-ToSymbolic case.



381

• Case Le-Fresh-SharedBorrow. Similar to the Le-ToSymbolic case.

• Case Le-Reborrow-SharedLoan. Similar to the Le-ToSymbolic case.

• Case Le-Abs-End-SharedLoan. We use (4) to prove that there is no borrow
s,r ` 2 ⌦f .

• Case Le-Abs-End-DupSharedBorrow. Similar to the Le-ToSymbolic case.

• Case Le-Reborrow-SharedBorrow. Similar to the Le-ToSymbolic case.

• Case Le-ToAbs. Similar to the Le-ToSymbolic case.

• Case Le-MergeAbs. Trivial.

• Cases Le-ClearAbs, Le-Abs-ClearValue, Le-Abs-DeconstructPair,
Le-Abs-DeconstructSum, Le-AnonValue. Trivial.

We need the framing lemma below for evaluation. We have the same disjointness
conditions as for the  framing lemma (19).

Lemma 20 (Frame Rule for Evaluation in LLBC+). For all ⌦, ⌦0 LLBC+ states, we
have:

⌦ ` s (r, ⌦0)) 8 ⌦f , framable ⌦ ⌦0 ⌦f ) ⌦ [ ⌦f ` s (r, ⌦0 [ ⌦f )

Proof.The proof is similar to the proof of 19. Like with the simulation proofs, we have to split
it into several auxiliarly lemmas for the evaluation of rvalues and for reorganizations. Exactly like
with 19, the difficult cases are: 1. the transitive case of reorganization, because it allows us to remove
borrows from the context; 2. the cases for statement evaluationwhere we need to use the induction
hypotheses (typically, E-Seq-Unit and E-Reorg). We handle those by using the same strategy as
in 19.

We now move on to the proof of Theorem 7. We do the proof by induction on the
step index. In order to do so we have to generalize the theorem statement a bit.

Lemma 21. For all ⌦ and ⌦# LLBC# states, step n, statement s, and S# set of states
with outcomes, we have:

(8 f 2 P , borrow_checks f)) ⌦  ⌦# ) ⌦# `llbc# s S# )

(⌦ `llbc s 
n
1) _ (9 ⌦1, ⌦ `llbc s 

n
(panic, ⌦1)) _

(9 r⌦1 ⌦
#
1 , r 2 {(), return, break i, continue i} ^

⌦ `llbc s (r, ⌦1) ^ ⌦1  ⌦#
1 ^ (r, ⌦#

1 ) 2 S#)

Proof.We do the proof by induction on the step index.
Case n = 0: trivial.
Case n = n0 + 1:
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We do it by induction on the statement s. Note that because we do not dive into function calls, we
can prove the statement by induction on the syntax rather than on the derivation rules.

When the statement does not contain a function call, we can reuse the proofs that there is a
forward simulation from LLBC# to LLBC# (also note that only function calls decrease the step index).

There remains the interesting case, that is a call to some function fn h�!⇢ i (�!xi :
�!⌧i ) (�!yj : �!⌧j ) (xret :

⌧) { s }). We use the fact that the rule E-Call-Symbolic and the predicate borrow_checks were
written so that they "match".

Let us illustrate how we do on an example. We start in the state ⌦0 below and evaluate
let z = choose(true, move px, move py):

⌦0 =

x0 7! loan
m ``0

y0 7! loan
m ``1

px 7! borrow
m ``0 0

py 7! borrow
m ``1 1

After pushing the stack (E-PushStack) we get ⌦1 below (the field stack of the state, which
contains the list of all the pushed stack variables, is implicit):

⌦1 =

x0 7! loan
m `0

y0 7! loan
m `1

px 7! ?

py 7! ?

xret 7! ?

x 7! borrow
m `0 0

y 7! borrow
m `1 1

The borrow checking assumption gives us that there exists some loan identifiers, symbolic values,
states ⌦init and ⌦final, and a set of states with outcomes S# such that:

⌦init ` choose.body S# ^

8 res 2 S#, 9 ⌦#, res = (panic, ⌦#) _ (res = (return, ⌦#) ^ ⌦#  ⌦#
final)

where:

⌦init =

A { borrowm `0x _, borrowm `0y _, loanm `x, loan
m `y },

xret 7! ?

x 7! borrow
m `x �x,

y 7! borrow
m `y �y),
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and:

⌦final =

A { borrowm `0x _, borrowm `0y _, loanm `z },

xret 7! borrow
m `z �z

x 7! ?,

y 7! ?,

We want to transform ⌦1 (by using  rules) in order to isolate a local state which is equal to ⌦init,
then apply the framing rules. One issue is that the borrow checking predicate fixes a choice of loans,
symbolic values and region abstractions identifiers (the `x, `y, etc. above), which is not necessarily the
choice which suits us (the borrow checking predicate gives us a “there exist”, while we want a “for all”).
Fortunately, we can apply the substitution lemmas to get the identifiers we want (17 and 18).

Another issue is that the “dangling” borrows in environment ⌦init are pairwise disjoint. This is not
necessarily the case in environment ⌦0 for two reasons: 1. we don’t enforce a well-formedness condition
on the state in the assumptions of our theorem, meaning there can be duplicated mutable borrows
(though in practice it won’t happen of course); 2. it is perfectly valid to use several times the same shared
borrows. We can take care of this problem by introducing reborrowing abstractions (A0 and A1 below,
and
�������!
Areborrow(⇢) in the proof of the general case afterwards) with rules Le-Reborrow-MutBorrow

and Le-Reborrow-SharedBorrow: as those rules introduce fresh loan identifiers, we make sure
the external “dangling” borrows are pairwise distinct.

Coming back to the example with choose, by repeatedly applying Le-Reborrow-MutBorrow-Abs,
Le-Reborrow-SharedBorrow, Le-MergeAbs and Le-ToSymbolic, we get that ⌦1  ⌦2,
where:

⌦2 =

x0 7! loan
m `0,

y0 7! loan
m `1,

px 7! ?,

py 7! ?,

A0 { borrowm `0 _, loanm `0x },

A1 { borrowm `1 _, loanm `0y },

// Frame is above, local state is below

A { borrowm `0x _, borrowm `0y _, loanm `x, loan
m `y },

x 7! borrow
m `x �x,

y 7! borrow
m `y �y,

xret 7! ?
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We now apply the frame rule and get that:

⌦2 ` choose.body S# ^

8 res 2 S#, 9 ⌦#, res = (panic, ⌦#) _ (res = (return, ⌦#) ^ ⌦#  ⌦#
3 )

where:

⌦3 =

x0 7! loan
m `0,

y0 7! loan
m `1,

px 7! ?,

py 7! ?,

A0 { borrowm `0 _, loanm `0x },

A1 { borrowm `1 _, loanm `0y },

// Frame is above, local state is below

Afinal { borrowm `0x _, borrowm `0y _, loanm `z },

x 7! ?,

y 7! ?,

xret 7! borrow
m `z �z

We pop the stack of ⌦3 (rule E-PopStack) and apply the assignemnt to z, and get ⌦4 (once
again, we make the stack field explicit):

⌦4 =

x0 7! loan
m `0,

y0 7! loan
m `1,

px 7! ?,

py 7! ?,

A0 { borrowm `0 _, loanm `0x },

A1 { borrowm `1 _, loanm `0y },

Afinal { borrowm `0x _, borrowm `0y _, loanm `z },

z 7! borrow
m `z �z

We finally merge the reborrowing abstractions (A0 and A1) into Afinal and get (this is exactly the
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state resulting from applying the rule E-Call-Symbolic):

⌦5 =

x0 7! loan
m `0,

y0 7! loan
m `1,

px 7! ?,

py 7! ?,

Afinal { borrowm `0 _, borrowm `1 _, loanm `z },

z 7! borrow
m `z �z

We illustrated the proof on the example of choose; we now come back to the general case.
We need some auxiliary lemmas.

Lemma 22 (Auxiliary Lemma: Frame Body - Value).

init_extern ~⇢ ⌧ =
����!
Aext(⇢)) proj_output ~⇢ ⌧ = (v0,

������!
Aext_in(⇢)))

�
8 ⇢, Ainit(⇢) = [

�
Aext(⇢) [Aext_in(⇢)

��
) proj_output ~⇢ ⌧ out = (vout,

����!
Aout(⇢)))

�
8 ⇢, Afinal(⇢) = Aout(⇢) [Aext(⇢)

�
)

�
8 ⇢, Ain(⇢) = { proj_input ⇢ v }

�
)

⇣
8 borrows ` 2 v, 9 v, loans ` v 2 ⌦#

0

⌘
)

�
8 ⇢, Asig(⇢) = Ain(⇢) [Aout(⇢)

�
)

9
�������!
Areborrow(⇢),

let ⌦#
beg = ⌦#

0 , x! V [v : ⌧ ], xret ! ?

let ⌦#
f = ⌦#

0 ,
�������!
Areborrow(⇢)

let ⌦#
init_local =

����!
Ainit(⇢), x! V [v0 : ⌧ ], xret ! ?

let ⌦#
init = ⌦#

init_local [ ⌦#
f

let ⌦#
final_local =

�����!
Afinal(⇢), x! V [?],

����!
y ! ?, xret ! vout

let ⌦#
final = ⌦#

final_local [ ⌦#
f

let ⌦#
end = ⌦#

0 ,
����!
Asig(⇢), x! V [?], xret ! vout

⌦#
beg  ⌦#

init ^ ⌦final  ⌦#
end ^ framable ⌦#

init_local ⌦
#
final_local ⌦

#
f

Proof. By induction on ⌧ .

• Pair. By induction hypotheses and Le-MergeAbs.

• & ⌧ . We apply Le-Reborrow-SharedBorrow twice: once for the Ainit abstraction and once
for the Areborrow abstraction. We note that only InitExtern-Shared, ProjOutput-Shared
and ProjInput-Shared apply for the projections (we do case disjunctions on v, init_extern ~⇢ ⌧ =
����!
Aext(⇢), proj_output ~⇢ ⌧ = (v0,

������!
Aext_in(⇢)) and proj_input ⇢ v). For framable we leverage the

freshness of the identifiers introduced by the rules and the fact that the Ainit(⇢) and Afinal(⇢)

abstractions don’t have identifiers which are also used elsewhere, at the exception of dangling
borrows pointing to loans in the Areborrow abstractions.
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• &mut ⌧ . Similar to the & ⌧ case, but this time with Le-Reborrow-MutBorrow-Abs.

• Sum. We apply Le-ToSymbolic (there can’t be borrows in sums).

• Literal. We apply Le-ToSymbolic.

Lemma 23 (Auxiliary Lemma: Frame Body).

⇣
8 i, init_extern ~⇢ ⌧i =

����!
Aext

i (⇢)
⌘
)

✓
8 i, proj_output ~⇢ ⌧i = (v0i,

������!
A

ext_in
i (⇢))

◆
)

⇣
8 ⇢, Ainit(⇢) = [

i

⇣
Aext

i (⇢) [A
ext_in
i (⇢)

⌘⌘
) proj_output ~⇢ ⌧ out = (vout,

����!
Aout(⇢)))

⇣
8 ⇢, Afinal(⇢) = Aout(⇢) [

⇣
[
i
Aext

i (⇢)
⌘⌘
)

�
8 ⇢, Ain(⇢) = { proj_input ⇢ vi }

�
)

⇣
8 borrows ` 2 �!vi , 9 v, loans ` v 2 ⌦#

0

⌘
)

�
8 ⇢, Asig(⇢) = Ain(⇢) [Aout(⇢)

�
)

9
�������!
Areborrow(⇢),

let ⌦#
beg = ⌦#

0 ,
�����!xi ! vi,

����!
y ! ?, xret ! ?

let ⌦#
f = ⌦#

0 ,
�������!
Areborrow(⇢)

let ⌦#
init_local =

����!
Ainit(⇢),

�����!
xi ! v0i,

����!
y ! ?, xret ! ?

let ⌦#
init = ⌦#

init_local [ ⌦#
f

let ⌦#
final_local =

�����!
Afinal(⇢),

�����!
xi ! ?,

����!
y ! ?, xret ! vout

let ⌦#
final = ⌦#

final_local [ ⌦#
f

let ⌦#
end = ⌦#

0 ,
����!
Asig(⇢),

�����!
xi ! ?,

����!
y ! ?, xret ! vout

⌦#
beg  ⌦#

init ^ ⌦final  ⌦#
end ^ framable ⌦#

init_local ⌦
#
final_local ⌦

#
f

Proof. By induction on length
�!xi . The base case is trivial: we note that

����!
Ainit(⇢) = ; and

�����!
Afinal(⇢) =

����!
Asig(⇢), and pose

�������!
Areborrow(⇢) = ;. In the recursive case, the list of local input variables

is: xn,
�!xi . We use the induction hypothesis with ⌦#

0 := ⌦#
0 , xn ! vn, then apply 22 to introduce

reborrowing abstractions for vn.

Given 23, the rest of the proof of the recursive case of 21 is straightforward.

Theorem 21 implies the target theorem 7.



Appendix G

Proof of Join and Collapse

We show the full rules for the join and collapse operations in Figure 12.1, Figure 12.2,
and Figure 12.3. In practice, we also sometimes need some more precise rules to join
values, that we show in Figure G.1.

We prove Theorem 9.

We introduce an auxiliary function proj_marked to formalize what it means to
project values and states to keep only the values coming from the left state or the values
coming from the right state. The term proj_marked l v (respectively, proj_marked r v)
is the value v where we discard the values marked as coming from the right (respectively,
left) state. We naturally extend this definition to region abstractions and states.

proj_marked l v = v

proj_marked l v = proj_marked r v = v

proj_marked l v = proj_marked r v = ;

... (Omitting tuples, etc.)

8 m 2 {l, r}, proj_marked m A {�!vi } = A {
������������!
proj_marked m vi }

... (Omitting the rules for states)

We introduce the auxiliary predicate sloans_incl for the proofs. We need it because
of the premises of Join-SharedBorrows and Join-SharedBorrows-Precise (which
in turn come from the premises of Le-Reborrow-SharedBorrow). The environments
⌦0 and ⌦1 on the left of ⌦0, ⌦1 ` join (, v) v0 v1 are actually needed only so that they
can be mentioned by those rules.

387
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Join-MutBorrows-Precise
⌦0, ⌦1 ` joinv v0 v1 + v2 |

�!
A l00, l

0
1, l2, A0, A1, A2 fresh

⌦0, ⌦1 ` joinv (borrowm `0 v0) (borrow
m `1 v1) + borrow

m `2 v2 |
A0 { borrow

m `0 _ , loanm `00 }, A1 { borrow
m `1 _ , loanm `01 },

A2 { borrowm `00 _, borrowm `01 _, loanm `2 },
�!
A

Join-SharedBorrows-Precise
loan

s `0 v0 2 ⌦0 loan
s `1 v1 2 ⌦1

no borrows, loans, ? 2 v0, v1 `00, `
0
1, `2, s0, s1, s2, A0, A1, A2 fresh

⌦0, ⌦1 ` joinv (borrows `0) (borrow
s `1) + borrow

s `2 |
A0 { borrow

s `0 , loan
s `00 s0 }, A1 { borrow

s `1 , loan
s `01 s1 }, A2 { borrows `00, borrow

s `01, loan
s `2 s2 }

Figure G.1: More Precise Rules to Join Borrows

sloans_incl ⌦ ⌦0 := 8 ` v, loans ` v 2 ⌦) 9 v0, loans ` v0 2 ⌦0

The proof requires several lemmas.

Lemma 24 (Join-Values-Le). For all ⌦0
l , ⌦0

r, ⌦l[.], ⌦r[.], vl, vr, vj,
�!
A we have:

(8 m 2 {l, r}, ⌦0
m  ⌦m[vm] ^ sloans_incl ⌦0

m ⌦m ^ wf_join_hole ⌦m[.] vm))

⌦0
l , ⌦

0
r ` join (vl, vr) vj |

�!
A )

8 m 2 {l, r}, ⌦0
m  ⌦m[vj], proj_marked m

�!
A ^ sloans_incl ⌦0

m (⌦m[vj], proj_marked m
�!
A )

where:

wf_join_hole ⌦[.] v :=

hole of ⌦[.] inside a shared loan) ? /2 v

Proof :
By induction on ⌦0

l , ⌦
0
r ` join (vl, vr) vj |

�!
A .

• Case Join-Same: trivial by reflexivity of .

• Case Join-Symbolic: we use Le-ToSymbolic.

• Cases Join-Bottom-Other, Join-Other-Bottom: we use Le-MoveValue. We need the
assumption wf_join_hole ⌦m[.] vm for the premise that the hole of ⌦l[.] or ⌦r[.] (depending on
whether vl = ? or vr = ?) is not inside a shared loan.

• Case Join-MutBorrows: we the the induction hypothesis for the inner value (with states
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⌦l[borrow
m `0 [.]] and ⌦r[borrow

m `1 [.]]) then Le-Reborrow-MutBorrow-Abs to introduce
the fresh region abstraction with the reborrow.

• Case Join-SharedBorrows: we use Le-Reborrow-SharedBorrow; the premises stating
that there are corresponding shared loans in the context are proven by using the premise of
Join-SharedBorrows in combination with the assumption sloans_incl ⌦0

m ⌦m.

• Case Join-MutLoans: we use Le-Reborrow-MutLoan-Abs to insert a fresh mutable loan
and move the current loan to a fresh region abstraction; the rules for�to-abs (ToAbs-MutBorrow
then ToAbs-MutLoan) allow us to conclude that the fresh region abstraction has the proper
shape.

• Case Join-SharedLoans: we use Le-Reborrow-SharedLoan.

• Cases Join-MutLoan-Other, Join-Other-MutLoan: we use Le-Fresh-MutLoan-Abs
to introduce a fresh loan on the side which doesn’t have one, then use the induction hypothesis.

• Cases Join-SharedLoan-Other, Join-Other-SharedLoan: we use Le-Fresh-SharedLoan
to introduce a fresh loan on the side which does’t have one, then use the induction hypothesis.

• Cases Join-Tuple, Join-Sum: trivial by the induction hypotheses.

• Case Join-Same-MutBorrow: trivial by the induction hypothesis.

• Case Join-Same-SharedLoan: trivial by the induction hypothesis; we have to use the premise
that there are no? in the inner values to prove that we can maintain the assumption sloans_incl ⌦0

m ⌦m.

• Case Join-MutBorrows-Precise: same as for the case Join-MutBorrows-Precise, but
we have to introduce additional region abstractions (with Le-Reborrow-MutBorrow-Abs).

• Case Join-SharedBorrows-Precise: same as for the case Join-SharedBorrows-Precise,
but we have to introduce additional region abstractions (with Le-Reborrow-SharedBorrow).

Lemma 25 (Join-States-Le). For all ⌦0
l , ⌦0

r, ⌦acc, ⌦l, ⌦r, ⌦j we have:

(8 m 2 {l, r}, ⌦0
m  ((proj_marked m ⌦acc) [ ⌦m)^

sloans_incl ⌦0
m ((proj_marked m ⌦acc) [ ⌦m)))

⌦0
l , ⌦

0
r ` join (⌦l, ⌦r) ⌦j )

8 m 2 {l, r}, ⌦0
m  proj_marked m (⌦acc [ ⌦j)

Proof :
By induction on ⌦0

l , ⌦
0
r ` join (⌦l, ⌦r) ⌦j .

• Case Join-Same-Abs: we pose ⌦0
acc := ⌦acc, A (we add the region abstraction A to ⌦acc) and

use the induction hypothesis.

• Case Join-Same-Anon: similar to case Join-Same-Abs; we pose ⌦0
acc := ⌦acc,_! v and use

the induction hypothesis.

• Case Join-AbsLeft: we pose ⌦0
acc := ⌦acc, A and use the induction hypothesis.

• Case Join-AbsRight: we pose ⌦0
acc := ⌦acc, A and use the induction hypothesis.

• Case Join-Var: we use 24, pose ⌦0
acc := ⌦acc,

�!
A , use the fact that sloans_incl is transitive, and

use the induction hypothesis.
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Lemma 26 (Collapse-Merge-Abs-Le). For all ⌦l, ⌦r, ⌦acc, ⌦l, ⌦r, ⌦j we have:

` A0 on A1 = A) 8 m 2 {l, r}, proj_marked m A0 on proj_marked m A1 = proj_marked m A

Proof :
By induction on ` A0 on A1 = A.

• Case MergeAbs-Union: by the induction hypothesis.

• Case MergeAbs-Mut: by the induction hypothesis.

• Case MergeAbs-Shared: by the induction hypothesis.

• Case MergeAbs-Mut-MarkedLeft: we use MergeAbs-Mut then the induction hypothesis
for the left projection, and directly use the induction hypothesis for the right projection.

• Case MergeAbs-Mut-MarkedRight: symmetric of previous case.

• Case MergeAbs-Shared-MarkedLeft: we use MergeAbs-Shared then the induction
hypothesis for the left projection, and directly use the induction hypothesis for the right projection.

• Case MergeAbs-Shared-MarkedRight: symmetric of previous case.

Lemma 27 (Collapse-Le). For all ⌦, ⌦0 we have:

` ⌦& ⌦0 ) 8 m 2 {l, r}, proj_marked m ⌦  proj_marked m ⌦0

Proof :
By induction on ` ⌦& ⌦0.

• Case Collapse-Merge-Abs. By Collapse-Merge-Abs and Le-MergeAbs.

• Case Collapse-Dup-MutBorrow. We note that, for m 2 {l, r}, we have:

proj_marked m
⇣
A [ { borrow

m ` _ , borrow
m ` _ }

⌘
= (proj_marked m A) [ { borrow

m ` _ }

= proj_marked m (A [ { borrow
m ` _ })

• Case Collapse-Dup-MutLoan. Similar to previous case.

• Case Collapse-Dup-SharedBorrow. Similar to previous case.

• Case Collapse-Dup-SharedLoan. Similar to previous case, but we use Le-ToSymbolic if
we need to introduce a fresh symbolic value.

Finally, the combination of theorems 25 and 27 gives us the target theorem (9).
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