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Context One of the main challenges of program verification today consists in finding a way of efficiently
reasoning about low-level, effectful programs. This problem has led to the development of a large
collection of frameworks and logics [24, 11, 17, 25, 4, 8, 6] which make various compromises between
ease of verification and expressiveness. Despite the intense research effort in this area, verifying such
programs still represents a daunting task [29, 16, 13, 7].

Following the development of the Rust programming language [2], the recent years have seen the
emergence of a new line of research [5, 21, 9, 26, 3, 15] which attempts to leverage the Rust type
system to improve scalability when reasoning about low-level programs. Rust is indeed a perfect target
for program verification, as its static ownership discipline strikes a good balance between a fine-grained,
expressive control of memory, making it a language of choice for system programming, and strong memory
guarantees, which can be leveraged to ease program verification. A key insight which drove the design
of frameworks such as [9, 15] is that a large subset of Rust doesn’t require to explicitly reason about
memory [19], which typically involves tedious, low-level proofs. Instead, proof engineers can focus on the
functional behavior of their programs.

Goals The topic of this internship is to work on the verification of Rust programs. In particular, we
are currently developing two tools for this purpose: hacspec [21, 20] and Aeneas [15, 1].

hacspec is foremost a purely functional subset of Rust, which supports operations such as copies,
moves and a certain form of loops, but forbids in-place updates and in particular mutable borrows. It
allows regular engineers to write and test specifications directly in a mainstream programming language
(i.e., Rust), rather than in the exotic language of an expert theorem prover. Once written, a hacspec
specification can be compiled to equivalent specifications in backends such as F⋆ or Coq, for proof
engineers to use them in their proofs. In particular, they can serve as high-level specifications for low-
level implementations written in frameworks such as Low⋆ [24] or Steel [11]. As it generates specifications,
the hacspec compiler attempts to generate code which looks as close as possible to the original user-
written program. This methodology allows to bridge the gap between unverified application code and
verified components.

Aeneas is a new verification pipeline for safe Rust programs. Aeneas leverages the Rust type system
to compile Rust programs to pure, executable models (i.e., pure, functional versions of the original Rust
programs). The key idea behind Aeneas’ compilation is that, under the proper restrictions, a Rust
function is fully characterized by a forward function, which computes its return value at call site, and a
set of backward functions (one per lifetime), which propagate changes back into the environment upon
ending lifetimes, thus accounting for side effects. Such forward and backward functions behave similarly
to lenses [10]. Relying on theorem provers to state and prove lemmas about those models, it is then
possible to enforce guarantees about the original programs. For instance, one can prove panic freedom
and functional correctness [15], but also security guarantees like authentication and confidentiality in the
case of cryptographic protocols as has been done in other frameworks [16], and potentially more.
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As such, hacspec and Aeneas are complementary. hacspec attempts to preserve an almost one-
to-one correspondance with the original Rust program, for the purpose of writing specifications. On
its side, Aeneas plugs itself farther in the compilation process and attempts to support a larger sub-
set of Rust. It tries to generate code which is readable and understandable for the purpose of verifying it.

Several topics are possible for this internship, including but not limited to the following. We are of
course open to suggestions if the prospective intern has topics in mind, in particular with regards to
potential applications.

We are interested in applying hacspec and Aeneas to specify and verify various large use cases,
which include but are not limited to cryptographic applications [29, 16] or storage systems [13]. Verifying
such applications would probably require to expand the expressiveness of those tools.

As of today, hacspec and Aeneas are independant projects, and establishing a link between them
would be useful. One could then use hacspec to annotate a program with pure specifications in the
form of preconditions and postconditions, before compiling this program with a combination of hacspec
and Aeneas to generate both a pure, executable model, and a set of lemma statements left for the user
to prove. This would allow us to bridge the gap between the pure model generated by Aeneas and the
original Rust program. One difficulty when using a model is indeed that it introduces an indirection
in the reasoning, meaning we have to pay even more attention to the way we write the specifications
about the model, to make sure they properly reflect the properties we want to prove about the original
program.

Aeneas currently supports a non-trivial subset of Rust which includes recursive datatypes and func-
tions, and loops, but it still lacks several core features of Rust. One such restriction is the lack of support
for function pointers, closures and traits. As in our translation a function is fully characterized by its
forward and backward functions, we believe it is naturally amenable to supporting function pointers and
traits: a function pointer would be characterized by a tuple of functions in the pure world, and a trait
would be implemented as a type class. Closures are a special case of traits and shouldn’t need any special
treatment.

Aeneas currently has limited support for interior mutability, by which one can introduce aliasing in
safe Rust programs, and which programmers notably leverage to implement synchronization primitives
such as mutexes for concurrent programs. The key challenge would be to design a lightweight, flexible
effects system, which would allow to reason about effectful behavior while leveraging the pure translation
whenever possible. We are leaning towards using interaction trees [27, 28] to implement such an effects
system.

We are also interested in proving soundness properties of our translation mechanism, with the end goal
of having fully mechanized proofs. Such proofs would be carried in several steps. Aeneas’ translation
mechanism relies at its core on the semantics of a language called LLBC (Low-Level Borrow Calculus),
which captures a large subset of Rust. In order to account for Rust’s borrow mechanism, LLBC’s memory
model is structured, in the sense that it doesn’t rely on a notion of map from memory addresses to values.
A first step would be to prove that such semantics preserves an alternative version of the semantics built
on top of an unstructured memory model, in the spirit of previous work modeling stateful programming
languages [18]. Then, we would prove that the translation generates a pure program which is refined by
the original Rust program, whose semantics is given by LLBC. The soundness proof for the semantics
of LLBC could be formalized once and for all, first with pen and paper, then in theorem prover. On
the other hand, a more realistic approach for the soundness of the translation might be to implement a
proof-producing mechanism which, given a Rust program, generates a proof of refinement alongside the
pure translation, as has been done in other projects [22, 14, 23, 12].

Qualifications This internship of 6 months or less would be hosted by the team Prosecco at Inria
Paris. The preferred qualifications for the student at the beginning of the internship would be:

• familiarity with the Rust programming language;

• fluency with a functional programming language like OCaml;

• some experience with at least one theorem prover (Coq, F⋆, LEAN, HOL4, Isabelle/HOL, ...);
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